Название: Нейросети. Обработка естественного языка
Автор: Джейд Картер
Издательство: Автор
isbn:
isbn:
Подготовка последовательностей:
– Токенизированные тексты преобразуются в последовательности фиксированной длины. Это важно для того, чтобы иметь одинаковую длину входных данных для обучения модели.
Создание CNN модели:
– Далее создается модель сверточной нейронной сети (CNN). Модель состоит из нескольких слоев, включая сверточные слои и пулинг слои. Сверточные слои используются для извлечения признаков из текста, а пулинг слои уменьшают размерность данных.
– После сверточных слоев добавляются полносвязные слои для классификации текста по категориям.
Компиляция модели:
– Модель компилируется с оптимизатором, функцией потерь и метриками. Функция потерь обычно является категориальной кросс-энтропией для многоклассовой классификации, а метрикой может быть точность (accuracy).
Обучение модели:
– Модель обучается на обучающем наборе данных в течение нескольких эпох. В процессе обучения модель корректирует свои веса и настраивается для лучшей классификации текста.
Оценка и тестирование:
– После обучения модель оценивается на тестовом наборе данных для оценки ее производительности. Метрики, такие как точность, полнота и F1-мера, могут использоваться для измерения качества классификации.
Применение модели:
– После успешного обучения модель можно использовать для классификации новых текстовых документов на категории.
Пример кода на Python с использованием библиотек TensorFlow и Keras для классификации текста с использованием CNN:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
# Подготовка размеченных данных (пример данных)
texts = ["Политика: новости о выборах", "Спорт: результаты чемпионата", "Экономика: рост ВВП", "Наука: новое исследование"]
labels = ["Политика", "Спорт", "Экономика", "Наука"]
# Преобразование меток в числа
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(labels)
# Токенизация и векторизация текстов
tokenizer = Tokenizer()
tokenizer.fit_on_texts(texts)
word_index = tokenizer.word_index
sequences = tokenizer.texts_to_sequences(texts)
# Подготовка последовательностей и паддинг
max_sequence_length = max([len(seq) for seq in sequences])
padded_sequences = pad_sequences(sequences, maxlen=max_sequence_length)
# Разделение на обучающий и тестовый наборы
x_train, x_test, y_train, y_test = train_test_split(padded_sequences, y, test_size=0.2, random_state=42)
# Создание CNN модели
model = Sequential()
model.add(Embedding(input_dim=len(word_index) + 1, output_dim=100, input_length=max_sequence_length))
model.add(Conv1D(128, 3, activation="relu")) # Изменено количество фильтров и размер свертки
model.add(GlobalMaxPooling1D())
model.add(Dense(len(set(y)), СКАЧАТЬ