Название: Нейросети. Обработка естественного языка
Автор: Джейд Картер
Издательство: Автор
isbn:
isbn:
plt.legend()
plt.show()
На графиках, полученных после выполнения предоставленного кода, вы увидите результаты обучения и оценку модели. Давайте разберем подробнее:
1. График точности на обучении (Точность на обучении): Этот график показывает, как точность модели изменяется в течение эпох обучения. Точность на обучении измеряет, как хорошо модель предсказывает данные обучения. Вы ожидаете, что точность будет увеличиваться с каждой эпохой. Если точность растет, это может указывать на то, что модель успешно изучает данные.
2. График потерь на обучении (Потери на обучении): Этот график отражает, как уменьшается потеря модели на обучении с течением эпох. Потери представляют собой меру того, насколько сильно предсказания модели отличаются от фактических меток. Цель – минимизировать потери. Уменьшение потерь также указывает на успешное обучение модели.
На практике хорошо обученная модель будет иметь следующие характеристики:
– Точность на обучении растет и стабилизируется на определенном уровне.
– Потери на обучении уменьшаются и стабилизируются на низком уровне.
Если точность на тестовых данных также высока, это означает, что модель успешно обобщает знания на новые, ранее не виденные данные.
На графиках, представленных в коде, вы сможете оценить, как точность и потери меняются с течением эпох, и определить успешность обучения модели.
Кроме того, существуют более сложные архитектуры, которые комбинируют RNN и CNN, чтобы использовать преимущества обоих типов сетей. Например, архитектура под названием Transformer, изначально разработанная для машинного перевода, стала основой для многих современных моделей в NLP, таких как BERT и GPT.
Архитектура Transformer представляет собой мощный прорыв в области обработки естественного языка (NLP) и обработки последовательностей в целом. Она представляет собой нейронную сеть, спроектированную специально для работы с последовательностями, и она имеет ряд ключевых особенностей:
1. Механизм внимания: Одной из ключевых особенностей Transformer является механизм внимания. Внимание позволяет модели фокусироваться на разных частях входных данных в зависимости от их важности. Это улучшает способность модели обрабатывать длинные последовательности и улавливать долгосрочные зависимости в данных.
2. Свёрточные и полносвязные слои: Transformer включает в себя свёрточные слои, которые работают с каждой позицией в последовательности независимо. Это позволяет модели извлекать локальные признаки из текста. Также в архитектуре есть полносвязные слои, которые обрабатывают информацию с учётом взаимодействия всех позиций в последовательности.
3. Многоуровневая структура: Transformer состоит из нескольких идентичных слоев, называемых "трансформерами", каждый из которых обрабатывает входные данные независимо. Это многоуровневое устройство позволяет модели извлекать признаки разной абстракции и работать с последовательностью на разных уровнях.
4. Многоголовое внимание: Transformer также использует многоголовое внимание (multi-head attention), что позволяет модели фокусироваться на разных аспектах входных данных одновременно. Это способствует изучению различных типов зависимостей в данных.
5.Позиционное кодирование: Поскольку Transformer не имеет встроенной СКАЧАТЬ