Название: Нейросети. Обработка естественного языка
Автор: Джейд Картер
Издательство: Автор
isbn:
isbn:
model = Sequential()
model.add(Embedding(len(word_index) + 1, 128, input_length=max_sequence_length))
model.add(Bidirectional(LSTM(64)))
model.add(Dense(1, activation='sigmoid'))
# Компилирование модели
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Обучение модели
X = np.array(sequences)
y = np.array(labels)
model.fit(X, y, epochs=5)
# Прогнозирование
new_texts = ["Это лучший фильм, который я видел!", "Не стоит тратить время на это.", "Продукт среднего качества."]
new_sequences = tokenizer.texts_to_sequences(new_texts)
new_sequences = pad_sequences(new_sequences, maxlen=max_sequence_length)
predictions = model.predict(new_sequences)
for i, text in enumerate(new_texts):
sentiment = "позитивный" if predictions[i] > 0.5 else "негативный"
print(f"Текст: '{text}' – Сентимент: {sentiment}")
```
Результат выполнения кода, представленного выше, будет включать в себя обучение модели на небольшом наборе данных (трех текстах) и прогнозирование сентимента для трех новых текстов. Каждый из новых текстов будет ассоциирован с позитивным или негативным сентиментом на основе предсказаний модели. Результаты будут выводиться на экран.
Этот вывод показывает результаты обучения модели (значения потерь и точности на каждой эпохе обучения) и, затем, результаты прогнозирования сентимента для новых текстов. Модель выдает "позитивный" или "негативный" сентимент на основе порогового значения (обычно 0.5) для выхода сигмоидальной активации.
Этот код демонстрирует основные шаги, необходимые для создания BiRNN модели для задачи сентимент-анализа текста. Ключевые моменты включают в себя токенизацию текстов, преобразование их в числовые последовательности, создание BiRNN модели, обучение на обучающих данных и прогнозирование на новых текстах.
Обратите внимание, что этот код предоставляет базовый каркас, и в реальных проектах вам потребуется более тщательная обработка данных, настройка гиперпараметров модели и оценка производительности.
Однако, стоит отметить, что BiRNN более сложная архитектура с большим числом параметров, чем обычные однонаправленные RNN, и поэтому требует больше вычислительных ресурсов для обучения и выполнения.
RNN, LSTM и GRU широко применяются в NLP для решения задач, таких как машинный перевод, анализ тональности текста, генерация текста и другие, где важен контекст и последовательность данных. Они позволяют моделям учитывать зависимости между словами и долгосрочные взаимосвязи в тексте, что делает их мощными инструментами для обработки текстовых данных.
Рассмотрим еще одну задачу, в которой можно использовать Bidirectional RNN (BiRNN). В этом примере мы будем решать задачу определения языка текста.
Пример задачи: Определение языка текста
Цель задачи:Определить, на каком языке написан данный текст.
Пример задачи: У вас есть набор текстов, и вам нужно автоматически определить, на каком языке каждый из них написан (например, английский, испанский, французский и т. д.).
Решение с использованием BiRNN:
1. Подготовка данных: Вам нужно иметь набор данных с текстами, для которых известен язык. Эти тексты должны быть предварительно обработаны и токенизированы.
2. Архитектура BiRNN: Создаем модель BiRNN для анализа текста. BiRNN будет принимать последовательности слов СКАЧАТЬ