Нейросети. Обработка естественного языка. Джейд Картер
Чтение книги онлайн.

Читать онлайн книгу Нейросети. Обработка естественного языка - Джейд Картер страница 9

СКАЧАТЬ прогнозируемую часть временного ряда на будущее.

      Завершив обучение и сделав прогнозы, вы можете визуально оценить, насколько хорошо модель справилась с задачей прогнозирования временного ряда.

      В этом примере обучаемые параметры модели – это веса и смещения в слое RNN и в слое Dense. Модель настраивает эти параметры в процессе обучения, чтобы минимизировать ошибку прогноза временного ряда.

      Обучаемые параметры позволяют модели адаптироваться к данным и находить закономерности, что делает их мощным инструментом для разнообразных задач машинного обучения.

      Однако RNN имеют несколько ограничений, из которых наиболее значимой является проблема затухания градиентов (vanishing gradients). Эта проблема заключается в том, что при обучении RNN градиенты (производные функции потерь по параметрам сети) могут становиться очень маленькими, особенно на длинных последовательностях. Это затрудняет обучение, поскольку сеть может "забывать" информацию о давно прошедших событиях в последовательности.

      Для решения проблемы затухания градиентов были разработаны более продвинутые архитектуры RNN:

      Long Short-Term Memory (LSTM):

      Long Short-Term Memory (LSTM) – это одна из наиболее популярных архитектур в области рекуррентных нейронных сетей (RNN). Она разработана для работы с последовательными данными и способна эффективно учитывать долгосрочные зависимости в данных. Давайте подробнее разберем, как работает LSTM:

      Специальные ячейки LSTM: Основная особенность LSTM заключается в использовании специальных ячеек памяти, которые позволяют сохранять и извлекать информацию из прошлых состояний. Эти ячейки состоят из нескольких внутренних гейтов (гейт – это устройство, которое решает, какая информация должна быть сохранена и какая должна быть проигнорирована).

      Забывающий гейт (Forget Gate): Этот гейт определяет, какая информация из прошлых состояний следует забыть или удалить из памяти ячейки. Он работает с текущим входом и предыдущим состоянием и выдает значение от 0 до 1 для каждой информации, которая указывает, следует ли ее забыть или сохранить.

      Входной гейт (Input Gate): Этот гейт определяет, какая информация из текущего входа должна быть добавлена в память ячейки. Он также работает с текущим входом и предыдущим состоянием, и вычисляет, какие значения следует обновить.

      Обновление памяти (Cell State Update): На этом этапе обновляется состояние памяти ячейки на основе результатов забывающего гейта и входного гейта. Это новое состояние памяти будет использоваться на следующем временном шаге.

      Выходной гейт (Output Gate): Этот гейт определяет, какую информацию из текущего состояния памяти следует использовать на выходе. Он учитывает текущий вход и предыдущее состояние, чтобы определить, какую информацию передать на выход.

      Долгосрочные зависимости: Благодаря специальным ячейкам и гейтам, LSTM способна учитывать долгосрочные зависимости в данных. Она может эффективно хранить информацию на протяжении многих временных шагов и извлекать ее, когда это необходимо.

      Применение LSTM: LSTM широко используется в задачах, связанных с последовательными данными, таких как обработка текста, анализ временных рядов, машинный перевод, генерация СКАЧАТЬ