Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 35

СКАЧАТЬ addition, from (2.209)

      where

      StartFraction 1 Over upper E overTilde Subscript t Baseline EndFraction equals StartFraction 1 Over upper E Subscript t Baseline EndFraction en-dash StartFraction left-parenthesis nu Subscript t Baseline right-parenthesis squared Over upper E Subscript upper T Baseline EndFraction comma alpha overTilde Subscript t Baseline equals alpha Subscript t Baseline plus nu Subscript t Baseline alpha Subscript upper T Baseline period(2.217)

      2.18.2 Stress and Displacement Fields

      The immediate objective is to determine the displacement component u3 and corresponding stresses σ11, σ12 and σ12 in terms of the mechanical loading parameters ε¯A,ε^A,ε¯T,ε^T,σt and the temperature difference ΔT. From (2.209), (2.210) and (2.212), the in-plane stresses must satisfy the relations

      On solving (2.218) and (2.219) for the stresses, it follows that

      where

      It is noted that the in-plane stresses are only linear functions of x3. It then follows, on using (2.210), that all the equilibrium equations (2.120)–(2.122) are satisfied.

      It now only remains to determine the value of the displacement component u3 describing the deflection of the beam. From (2.216) and (2.220)

      On using (2.215) and (2.222) it can be shown that

      nu Subscript normal t Baseline plus nu Subscript normal upper A Baseline StartFraction upper E Subscript normal upper T Baseline Over upper E Subscript normal upper A Baseline EndFraction nu overTilde Subscript normal a Baseline equals upper E overTilde Subscript normal upper T Baseline left-parenthesis StartFraction nu Subscript 
              <a href=СКАЧАТЬ