Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 33

СКАЧАТЬ equals negative nu subscript text A end text end subscript over E subscript text A end text end subscript sigma subscript r r end subscript minus nu subscript text A end text end subscript over E subscript text A end text end subscript sigma subscript theta theta end subscript plus 1 over E subscript text A end text end subscript sigma subscript z z end subscript plus alpha subscript text A end text end subscript capital delta T comma epsilon subscript r theta end subscript equals fraction numerator sigma subscript r theta end subscript over denominator 2 mu subscript text t end text end subscript end fraction. end cell end table"/>(2.199)

      When the fibres are aligned in a direction parallel to the x1-axis, as required in Chapters 6 and 7 concerning laminates and their plies, the transverse isotropic stress-strain relations, resulting from the orthotropic form (2.196), are given by

      where, again, the relation (2.198) must be satisfied.

      For plane strain conditions such that ε11≡0, it follows from (2.200) that

      table attributes columnalign left end attributes row cell sigma subscript 11 equals nu subscript text A end text end subscript left parenthesis sigma subscript 22 plus sigma subscript 33 right parenthesis minus E subscript text A end text end subscript alpha subscript text A end text end subscript capital delta T comma end cell row cell epsilon subscript 22 plus epsilon subscript 33 equals left parenthesis fraction numerator 1 minus nu subscript text t end text end subscript over denominator E subscript text T end text end subscript end fraction minus fraction numerator 2 nu subscript text A end text end subscript superscript 2 over denominator E subscript text A end text end subscript end fraction right parenthesis left parenthesis sigma subscript 22 plus sigma subscript 33 right parenthesis plus 2 left parenthesis alpha subscript text T end text end subscript plus nu subscript text A end text end subscript alpha subscript text A end text end subscript right parenthesis capital delta T. end cell end table(2.201)

      When ΔT=0, the term ε22+ε33 is the change in volume per unit volume ΔV/V for the plane strain conditions under discussion when an equiaxial transverse stress σ is applied such that σ2=σ3=σ. It then follows that a plane strain bulk modulus kT can be defined by

      1 over k subscript text T end text end subscript equals fraction numerator 2 left parenthesis 1 minus nu subscript text t end text end subscript right parenthesis over denominator E subscript text T end text end subscript end fraction minus fraction numerator 4 nu subscript text A end text end subscript superscript 2 over denominator E subscript text A end text end subscript end fraction comma(2.202)

      such that σ=kTΔV/V when ΔT=0.

      For isotropic materials, EA=ET=E, νA=νt=ν and μA=μt=μ so that

      and so that (2.198) has the following form

      It is clear that the elastic constants of an isotropic material are fully characterised by just two independent elastic constants, such as one of the following combinations: (E,ν), (μ,ν) and (E,μ). One of Lamé’s constants λ (the other is the shear modulus μ) and the bulk modulus k are often used as elastic constants for isotropic materials. These are related to Young’s modulus E, the shear modulus μ and Poisson’s ratio ν as follows (see (2.161)):

      The inverse form is

      upper E equals StartFraction mu left-parenthesis 3 lamda plus 2 mu right-parenthesis Over lamda plus mu EndFraction comma nu equals StartFraction lamda Over 2 left-parenthesis lamda plus mu right-parenthesis EndFraction period(2.206)

      It is sometimes convenient to characterise an isotropic material using the two elastic constants μ and ν in which case, in addition to the relation (2.204),

      lamda equals StartFraction 2 mu nu Over 1 minus 2 nu EndFraction period(2.207)

      More frequently, and as required for Chapter 3, it is useful to express Young’s modulus E and Poisson’s ratio ν in terms of the bulk modulus k and the shear modulus μ. On using (2.204) and (2.205)

      upper E equals StartFraction 9 k mu Over 3 k plus mu EndFraction comma nu equals StartFraction 3 k minus 2 mu Over 2 left-parenthesis 3 k plus mu right-parenthesis EndFraction period(2.208)

СКАЧАТЬ