Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 77

СКАЧАТЬ obtained using numerical methods, and which are expected to be accurate. First, the transverse thermal conductivity is considered and the comparison of Maxwell’s methodology with results of Perrins et al. [8] is shown in Figure 4.2. The normalised effective transverse conductivity is defined by κTeff/κTm and the three materials considered are for isotropic fibres and matrix such that κf/κm=2,10,∞.

      Figure 4.3 shows a comparison of transverse bulk modulus obtained using Maxwell’s methodology with results of Eischen and Torquato [9]. The normalised effective transverse bulk modulus is defined by kTeff/kTm and the three materials considered are for isotropic fibres and matrix such that μf/μm=135,22.5,6.75, μf/kf=0.75 and μm/km=0.33.

      Figure 4.3 Comparison of results for normalised effective transverse bulk modulus obtained using Maxwell’s methodology with those of Modified from Eischen and Torquato [9] for three different materials.

      Figure 4.5 shows a comparison of transverse shear modulus obtained using Maxwell’s methodology with results of Eischen and Torquato [9]. The normalised effective transverse shear modulus is defined by μteff/μm and the three materials considered are for isotropic fibres and matrix such that μf/μm=135,22.5,6.75, μf/kf=0.75 and μm/km=0.33.

      Figure 4.5 Comparison of results for normalised effective transverse shear modulus obtained using Maxwell’s methodology with those of Modified from Eischen and Torquato [9] for three different materials.

      References

      1 1. Maxwell, J.C. (1873). A Treatise on Electricity and Magnetism, 1st ed. (3rd edition, 1892). Chapter 9, Vol. 1. Oxford: Clarendon Press.

      2 2. McCartney, L.N. and Kelly, A. (2008). Maxwell’s far-field methodology applied to the prediction of properties of multi-phase isotropic particulate composites. Proceedings of the Royal Society A464: 423–446.

      3 3. Hashin, Z. (1983). Analysis of composite materials - A survey. Journal of Applied Mechanics 50: 481–505.

      4 4. Hasselman, D.P.H. and Johnson, L.F. (1987). Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials 21: 508–515.

      5 5. Torquato, S. (2002). Random Heterogeneous Materials. New York: Springer-Verlag.

      6 6. McCartney, L.N. (2010). Maxwell’s far-field methodology predicting elastic properties of multiphase composites reinforced with aligned transversely isotropic spheroids. Philosophical Magazine 90: 4175–4207.

      7 7. Hashin, Z. and Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase composites. Journal of the Mechanics and Physics of Solids 11: 127–140.

      8 8. Perrins, W.T., McKenzie, D.R., and McPhedran, R.C. (1979). Transport properties of regular arrays of cylinders. Proceedings of the Royal Society of London A369: 207–225.

      9 9. Eischen, J.W. and Torquato, S. (1993). Determining elastic behaviour of composites by the boundary element method. Journal of Applied Physics 74 (1): 159–170.

      10 10. Symm, G.T. (1970). The longitudinal shear modulus of a unidirectional fibrous composite. Journal of Composite Materials 4: 426–428.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SAQUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAADIcAgAAAgAA HAJQABBuaWNob2xhc3dlaHJrYW1wHAIFABE5NzgxMTE4NDg1Mjg2LnBkZjhCSU0EJQAAAAAAEFDV eOdAjcBSmzGsrC3gqIA4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3ByaW50T3V0cHV0AAAABQAA AABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAAD3ByaW50U2l4dGVlbkJp dGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAA DABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAA AAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJp bnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29s AAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAA RW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABS ZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAA AABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAAAAAAAAAAAABSc2x0VW50 RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2VudW0AAAAAUGdQcwAAAABQ Z1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1JsdAAAAAAAAAAAAAAAAFNj bCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNyb3BXaGVuUHJpbnRpbmdib29sAAAAAA5jcm9wUmVjdEJv dHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0TGVmdGxvbmcAAAAAAAAADWNyb3BSZWN0UmlnaHRsb25n AAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcAAAAAADhCSU0D7QAAAAAAEAEsAAAAAQABASwAAAABAAE4 QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AAADhCSU0D8gAAAAAACgAA////////AAA4QklNBA0AAAAA AAQAAABaOEJJTQQZAAAAAAAEAAAAHjhCSU0D8wAAAAAACQAAAAAAAAAAAQA4QklNJxAAAAAAAAoA AQAAAAAAAAABOEJJTQP1AAAAAABIAC9mZgABAGxmZgAGAAAAAAABAC9mZgABAKGZmgAGAAAAAAAB ADIAAAABAFoAAAAGAAAAAAABADUAAAABAC0AAAAGAAAAAAABOEJJTQP4AAAAAABwAAD///////// ////////////////////A+gAAAAA/////////////////////////////wPoAAAAAP////////// //////////////////8D6AAAAAD/////////////////////////////A+gAADhCSU0ECAAAAAAA EAAAAAEAAAJAAAACQAAAAAA4QklNBB4AAAAAAAQAAAAAOEJJTQQaAAAAAANPAAAABgAAAAAAAAAA AAAMAwAAB/wAAAANADkANwA4ADEAMQAxADgANAA4ADUAMgA4ADYAAAABAAAAAAAAAAAAAAAAAAAA AAAAAAEAAAAAAAAAAAAAB/wAAAwDAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAA EAAAAAEAAAAAAABudWxsAAAAAgAAAAZib3VuZHNPYmpjAAAAAQAAAAAAAFJjdDEAAAAEAAAAAFRv cCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAAwDAAAAAFJnaHRsb25nAAAH /AAAAAZzbGljZXNWbExzAAAAAU9iamMAAAABAAAA СКАЧАТЬ