Acoustic and Vibrational Enhanced Oil Recovery. George V. Chilingar
Чтение книги онлайн.

Читать онлайн книгу Acoustic and Vibrational Enhanced Oil Recovery - George V. Chilingar страница 13

Название: Acoustic and Vibrational Enhanced Oil Recovery

Автор: George V. Chilingar

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119760177

isbn:

СКАЧАТЬ Well Experiments

      The authors studied the energy balance between the generated vibro-energy and energy contained in the additional oil produced by using vibrators. Calculations show that the amount of vibro-energy applied to one unit of rock volume does not exceed 1.5% of the energy contained in the oil present in this unit volume calculations were based on the fact that the energy content of 1 kg of oil is 4.2 = 107 J. Therefore, for this process to be economically feasible, it is necessary to increase the oil production by a minimum of 1.5% (Vahitov and Simkin, 1985 [36]). To study feasibility of enhanced oil recovery based on the use of vibro-energy, field experiments were conducted in several old oil field in Russia, Uzbekistan, and Kirgizstan.

       1.2.2 Mechanisms of Interaction of Fluid Flow With the Vibro-Energy in Porous Media

      Laboratory and field experiments demonstrate the dependence of fluid flow and character of oil displacement by water on application of vibro-energy. Results of experiments demonstrate that kro/krw and the rate of water displacement by water increase on application of vibro-energy. The effect of vibro-energy on fluid flow the in porous media is defined by a number of nonlinear factors. Application of vibro-energy causes periodic or quasi-periodic movements of oil and water phases in pore channels with periodically changing directions. Due to these periodic movements, molecules of oil and water stick to a lesser degree to the solid phase. Accelerations of the oil phase and water phase are related to each other as (Kouznetsov and Simkin, 1994 [21]):

      where ρo and ρw are densities of oil and water, respectively; xo and xw are distances traveled by the oil droplet and water droplet, respectively; and t is the time.

      The relative permeability to oil also increases due to reduction in the interfacial tension and contact angle between oil and water on application of vibroenergy. As a result, the size of oil globules decreases.

      The results of vibro-stimulation tests for enhanced oil recovery, using powerful surface-based vibro seismic sources, indicate that the rate of displacement of oil by water increases and percentage of non-recoverable residual oil decreases if the vibroenergy is applied to the porous medium containing oil (Kuznetsov et al., 2021 [68]). Tests on sandpacks showed an increase of degassing rate due to application of vibro-energy. Results of both laboratory and field tests of the proposed enhanced oil recovery method showed an increase in the recovery of oil and oil-water ratio. Decrease in water cut is caused by the reduction in the oil-water interfacial tension and increase in the relative permeability to oil and to water.

      This proposed vibro-seismic methodology will serve as an additional enhanced oil production recovery technique. Vibro-energy reduces interfacial tension, increases the relative permeability to oil, and increases the produced oil-water ratio. Possibly, this technique can be used in conjunction with other methods, such as thermal recovery, application of direct electric current, and chemical floods.

      In the, 1980s, Donaldson, Chilingar, and Yen published two books on Enhanced Oil Recovery (I: Fundamental and Analyses and II: Processes and Operations) (Donaldson et al., 1985 [57]; Donaldson et al., 1989 [58]).

      Inasmuch as both acoustic/vibrational and EEOR technologies are used by the authors in revitalizing abandoned oil fields, decision was made to invite the foremost experts on EEOR (Professor’s Donald Hill and Muhammad Haroun) to make contribution to this book.

      1. Ambah, S.A., Chilingar, G.V., Beeson, C.M., Application of electrokinetic phenomena in civil and petroleum engineering. N Y Acad. Sci., 118, 585– 602, 1965.

      3. Aoyagi, K., Kazama, T., Sekiguchi, K., Chilingarian, G.V., Experimental compaction of Na-Montmorillonite clay mixed with crude oil and seawater. Chem. Geol., 49, 385–392, 1985.

      4. Aoyagi, K., Kobayashi, N., Kazama, T., Sawa, T., Sasaki, S., Compaction of clays under high pressure and programming temperature. J. Jpn. Assoc. Pet. Technol., 40, 111–116 (in Japanese), 1975.

      5. Beresnev, I. and Johnson, P., Elastic-wave stimulation of oil production: A review of methods and results. Geophysics, 59, 1000, 1994.

      6. Beresnev, I., Theory of vibratory mobilization of nonwetting fluids entrapped in pore constrictions. Geophysics, 71, 2006.

      7. Buryakovsky, L., Chilingar, G.V., Rieke, H.H., Shin, S., Fundamentals of the Petrophysics of Oil and Gas Reservoirs, p. 374, Wiley- Scrivener, Salem, MA, 2012.

      8. Burst, J.F., Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum imigration. Am. Assoc. Pet. Geol. Bull., 53, 73–93, 1969.

      9. Chilingar, G.V. and Adamson, L.G., Does some migration of oil occur in a gaseous form? Int. Geol. Congr. Sec. 1, Part 1, 64–70, 1964.

      10. Chilingar, G.V., El-Nassir, A., Stevens, R.G., Effect of direct electrical current on permeability of sandstone cores. J. Pet. Technol., 22, 830–836, 1970.

      11. Chilingar, G.V. and Knight, L., Relationship between pressure and moisture content of kaolinite, illite and montmorillonite clays. Am. Assoc. Pet. Geol. Bull., 56, 796–802, 1960.

      12. Dickey, СКАЧАТЬ