Vibroacoustic Simulation. Alexander Peiffer
Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 40

Название: Vibroacoustic Simulation

Автор: Alexander Peiffer

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119849865

isbn:

СКАЧАТЬ 1 Over bold-italic upper Z Subscript a Baseline EndFraction right-parenthesis p Subscript r m s Superscript 2"/> (2.88)

      It is instructive to see the mechanical properties considering the limit cases from above and extract the mass that is moved by the surface. From Newtons’s law a force given by F=4πR2p leads to an in-phase acceleration of jωvr of a mass m

bold-italic upper F equals bold-italic p Baseline 4 pi upper R squared equals m j omega bold-italic v Subscript r

      hence

       m equals upper R e left-parenthesis StartFraction 1 Over j omega EndFraction StartFraction bold-italic p Over bold-italic upper Q EndFraction right-parenthesis equals StartFraction 1 Over omega EndFraction upper I m left-parenthesis bold-italic upper Z Subscript a Baseline right-parenthesis (2.89)

      For kR≪1 we get: m=4πR3ρ0=3Vsphρ0. Thus, at low frequencies the source surface motion carries three times the fluid volume of the sphere. This motion near the source is called an evanescent wave, because it is oscillatory motion of fluid that does not radiate.

      2.4.1.4 Point Sources

      A point source is a spherical source with an infinitely small radius. Performing the limit kR→0 for Equation (2.73) leads to the velocity potential for point sources of strength Q

       normal upper Phi left-parenthesis r comma omega right-parenthesis equals minus StartFraction bold-italic upper Q left-parenthesis omega right-parenthesis Over 4 pi r EndFraction e Superscript minus j k r (2.90)

      The pressure and velocity field of such a source is given by

      and

       bold-italic v Subscript r Baseline left-parenthesis r comma omega right-parenthesis equals StartFraction partial-differential normal upper Phi Over partial-differential r EndFraction normal upper Phi equals StartFraction bold-italic upper Q left-parenthesis omega right-parenthesis Over 4 pi r EndFraction j k left-parenthesis 1 plus StartFraction 1 Over j k r EndFraction right-parenthesis e Superscript minus j k r Baseline equals Overscript r much-greater-than k Endscripts StartFraction j k bold-italic upper Q Over 4 pi r EndFraction e Superscript minus j k r (2.92)

      All other relations regarding power and intensity expressions remain. We see that the limit is expressed for kR and not for the wavelength. The reason is that it is the ratio of a characteristic length (in this case the sphere radius) to the wavelength that determines if the geometrical details must be considered or not. In other words, a wave of a certain wavelength doesn’t care about details that are much smaller.

      With the D’Alambert solution for spherical waves (2.66) we can also derive a point source in time domain

       normal upper Psi left-parenthesis r comma t right-parenthesis equals minus StartFraction upper Q left-parenthesis t minus c 0 slash r right-parenthesis Over 4 pi r EndFraction (2.93)

      The point source is of great importance for the solution of the inhomogeneous wave equation in combination with complex boundary conditions. Any source can be reconstructed by a superposition of point sources as shown in Section 2.7.

       mathematical left-angle upper I left-parenthesis r right-parenthesis mathematical right-angle Subscript upper T Baseline equals StartFraction upper Q Subscript rms Superscript 2 Baseline k squared rho 0 c Over 16 pi squared r squared EndFraction (2.94)

      and the total radiated power

       mathematical left-angle normal upper Pi mathematical right-angle Subscript upper T Baseline equals StartFraction upper Q Subscript rms Superscript 2 Baseline k squared rho 0 c 0 Over 4 pi EndFraction (2.95)

      with radiation impedance following from this

       upper Z Subscript a Baseline equals StartFraction k squared rho 0 c 0 Over 4 pi EndFraction (2.96)

      2.5 Reflection of Plane Waves

      Figure 2.7 Reflection of a plane wave at an infinite surface with impedance Z2. Source: Alexander Peiffer.

      Without loss of generality the wave front is parallel to the y-axis and all properties are functions of x and z. The solution in the half space of z>0 is the superposition of two plane waves.

       normal upper Phi 1 left-parenthesis r right-parenthesis equals normal upper Phi e Superscript minus j bold k bold r Baseline plus normal upper Phi Superscript left-parenthesis upper R right-parenthesis Baseline e Superscript minus j bold k Super Superscript left-parenthesis upper R right-parenthesis Superscript bold r (2.97)

      With the following arguments of the exponential function

       StartLayout 1st Row 1st Column bold k bold r 2nd Column equals k left-parenthesis sine theta x minus cosine theta z right-parenthesis EndLayout (2.98)

       StartLayout 1st Row 1st Column bold k Superscript left-parenthesis upper R right-parenthesis Baseline bold r 2nd Column equals k left-parenthesis sine theta Superscript left-parenthesis upper R right-parenthesis Baseline x plus cosine theta Superscript left-parenthesis upper R right-parenthesis Baseline z right-parenthesis EndLayout (2.99)

      The pressure at the surface z=0 is given by

       bold-italic p left-parenthesis x comma z equals 0 right-parenthesis equals j omega rho 0 normal upper Phi 1 equals j omega rho 0 left-parenthesis normal upper 
              <a href=СКАЧАТЬ