Principles of Superconducting Quantum Computers. Daniel D. Stancil
Чтение книги онлайн.

Читать онлайн книгу Principles of Superconducting Quantum Computers - Daniel D. Stancil страница 16

Название: Principles of Superconducting Quantum Computers

Автор: Daniel D. Stancil

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119750741

isbn:

СКАЧАТЬ 2nd Column equals StartFraction Math bar pipe bar symblom alpha mathematical right-angle plus Math bar pipe bar symblom beta mathematical right-angle Over StartRoot 2 EndRoot EndFraction circled-times StartFraction Math bar pipe bar symblom alpha mathematical right-angle plus Math bar pipe bar symblom beta mathematical right-angle Over StartRoot 2 EndRoot EndFraction 3rd Row 1st Column 2nd Column equals one-half left-parenthesis Math bar pipe bar symblom alpha alpha mathematical right-angle plus Math bar pipe bar symblom alpha beta mathematical right-angle plus Math bar pipe bar symblom beta alpha mathematical right-angle plus Math bar pipe bar symblom beta beta mathematical right-angle right-parenthesis period EndLayout"/> (1.60)

      However, by the linearity of unitary operators:

      Since Eqs. (1.60) and (1.61) cannot both be true, there is no unitary Uclone that can perform the cloning operation for all states.

      We stated earlier that we can clone a (computational) basis state. This can be done with the CNOT gate, with the first qubit as the control. (With our bottom-to-top ordering, this corresponds to the UCN′ operator from (1.52).) Suppose state |ψ⟩ is either |0⟩ or |1⟩, but we don’t know which.

      upper U prime Subscript normal upper C normal upper N Baseline Math bar pipe bar symblom psi mathematical right-angle Math bar pipe bar symblom 0 mathematical right-angle equals Start 2 By 2 Matrix 1st Row 1st Column Blank 2nd Column upper U prime Subscript normal upper C normal upper N Baseline Math bar pipe bar symblom 00 mathematical right-angle equals Math bar pipe bar symblom 00 mathematical right-angle comma if Math bar pipe bar symblom psi mathematical right-angle equals Math bar pipe bar symblom 0 mathematical right-angle 2nd Row 1st Column Blank 2nd Column upper U prime Subscript normal upper C normal upper N Baseline Math bar pipe bar symblom 10 mathematical right-angle equals Math bar pipe bar symblom 11 mathematical right-angle comma if Math bar pipe bar symblom psi mathematical right-angle equals Math bar pipe bar symblom 1 mathematical right-angle EndMatrix equals Math bar pipe bar symblom psi psi mathematical right-angle period (1.62)

      If we apply the circuit from Figure 1.5 to an arbitrary state |ψ⟩ = α|0⟩ + β|1⟩, we get a result that looks sort of like cloning, but not quite:

      upper U Subscript normal upper C normal upper N Baseline left-parenthesis upper I circled-times upper H right-parenthesis Math bar pipe bar symblom 0 mathematical right-angle Math bar pipe bar symblom psi mathematical right-angle equals StartFraction alpha Math bar pipe bar symblom 00 mathematical right-angle plus beta Math bar pipe bar symblom 11 mathematical right-angle Over StartRoot 2 EndRoot EndFraction period (1.63)

      The result is not cloning because the two qubits are entangled. We did not succeed in creating two independent copies of |ψ⟩. This is a useful construct, however, and can be extended to create n-qubit states that look like this:

StartFraction alpha Math bar pipe bar symblom 0000 ellipsis mathematical right-angle plus beta Math bar pipe bar symblom 1111 ellipsis mathematical right-angle Over 2 Superscript n slash 2 Baseline EndFraction period

      These states will be useful for quantum error correction codes (Chapter 10).

      1.8 Example: Deutsch’s Problem

      Consider a function that takes a single binary digit as input, and provides a single binary digit as output. There are four possible functions: f1(x)=0, f2(x)=1, f3(x)=x, and f4(x)=x¯. Suppose someone gave us an implementation of one of these functions in a black box, and asked us to determine whether f(0)=f(1), or if f(0)≠f(1). Classically, we could do this in two function calls, one with x = 0, and one with x = 1. However, using a quantum algorithm we can answer this question with a single function call! Let’s see how this could be done.

      Figure 1.8 Conceptual illustration of the Deutsch Problem.

      psi 1 equals StartFraction 1 Over StartRoot 2 EndRoot EndFraction left-parenthesis Math bar pipe bar symblom 0 mathematical right-angle plus Math bar pipe bar symblom 1 mathematical right-angle right-parenthesis period (1.64)

      Note that the Hadamard gate enables us to apply U to both |0⟩ and |1⟩ at the same time. This is referred to as quantum parallelism and is one of the secrets behind the power of quantum computing (although there are some key qualifications that make this somewhat less exciting than it would seem at first!).

      Continuing with the calculation, we next compute ψ2=Uψ1 to obtain

      psi 2 equals StartFraction 1 Over StartRoot 2 EndRoot EndFraction left-bracket left-parenthesis negative 1 right-parenthesis Superscript f left-parenthesis 0 right-parenthesis Baseline Math bar pipe bar symblom 0 mathematical right-angle plus left-parenthesis negative 1 right-parenthesis Superscript f left-parenthesis 1 right-parenthesis Baseline Math bar pipe bar symblom 1 mathematical right-angle right-bracket period (1.65)

      Applying the second Hadamard gate gives the final output:

      StartLayout 1st Row 1st Column upper H psi 2 2nd Column equals one-half left-parenthesis negative 1 right-parenthesis Superscript f left-parenthesis 0 right-parenthesis Baseline left-bracket Math bar pipe bar symblom 0 mathematical right-angle plus Math bar pipe bar symblom 1 mathematical right-angle right-bracket plus one-half left-parenthesis 
              <a href=СКАЧАТЬ