Principles of Superconducting Quantum Computers. Daniel D. Stancil
Чтение книги онлайн.

Читать онлайн книгу Principles of Superconducting Quantum Computers - Daniel D. Stancil страница 15

Название: Principles of Superconducting Quantum Computers

Автор: Daniel D. Stancil

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119750741

isbn:

СКАЧАТЬ Here the expression I⊗H simply means a Hadamard gate is applied to the right qubit, and the identity matrix applied to the left qubit (which leaves the left qubit unchanged). Completing the calculation gives

      Figure 1.5 Circuit for creating an entangled state known as a Bell State. When the two qubits are measured, they will either both be 0, or they will both be 1.

      StartLayout 1st Row 1st Column upper U Subscript normal upper C normal upper N Baseline left-parenthesis upper I circled-times upper H right-parenthesis Math bar pipe bar symblom 00 mathematical right-angle 2nd Column equals upper U Subscript normal upper C normal upper N Baseline Math bar pipe bar symblom 0 mathematical right-angle left-parenthesis StartFraction Math bar pipe bar symblom 0 mathematical right-angle plus Math bar pipe bar symblom 1 mathematical right-angle Over StartRoot 2 EndRoot EndFraction right-parenthesis EndLayout (1.53)

      StartLayout 1st Row 1st Column Blank 2nd Column equals StartFraction 1 Over StartRoot 2 EndRoot EndFraction upper U Subscript normal upper C normal upper N Baseline left-parenthesis Math bar pipe bar symblom 00 mathematical right-angle plus Math bar pipe bar symblom 01 mathematical right-angle right-parenthesis EndLayout (1.54)

      Note that there is no way to factor this state into (qubit 1 state) ⊗ (qubit 0 state). This is known as a Bell State, and it is an example of an entangled state, as described in Section 1.1.5.

      Figure 1.6 Result of executing the circuit 1024 times on a quantum simulator, compared with executing the circuit 1024 times on a real IBM quantum computer.

      The simulator gives the result expected from an error-free quantum processor. In contrast, the quantum processors available today are noisy and contain errors. As an illustration, Figure 1.6 also shows the result of executing 1024 shots on a real IBM Quantum processor. Although the states |00⟩ and |11⟩ do occur most frequently, the error states |01⟩ and |10⟩ occasionally occur as well. Fortunately there are techniques to reduce and partially mitigate such noise (Chapter 9), and these techniques represent an active area of research.

      1.7 No Cloning, Revisited

      With a better understanding of quantum states and operations, we are now ready to construct a proof of the no-cloning theorem. The proof relies on the fact that unitary operators are linear; when applied to a sum of states, the operator operates independently on each component:

      upper U left-parenthesis Math bar pipe bar symblom psi mathematical right-angle plus Math bar pipe bar symblom phi mathematical right-angle right-parenthesis equals upper U Math bar pipe bar symblom psi mathematical right-angle plus upper U Math bar pipe bar symblom phi mathematical right-angle period (1.56)

      Figure 1.7 Hypothetical cloning operator, that creates an exact and independent copy of unknown quantum state |α⟩. The text will show that such an operator cannot be implemented.

      Further suppose that we have two states:

      StartLayout 1st Row 1st Column Math bar pipe bar symblom alpha mathematical right-angle 2nd Column equals a 0 Math bar pipe bar symblom 0 mathematical right-angle plus a 1 Math bar pipe bar symblom 1 mathematical right-angle EndLayout (1.57)

      StartLayout 1st Row 1st Column Math bar pipe bar symblom beta mathematical right-angle 2nd Column equals b 0 Math bar pipe bar symblom 0 mathematical right-angle plus b 1 Math bar pipe bar symblom 1 mathematical right-angle period EndLayout (1.58)

      By the definition of cloning:

      StartLayout 1st Row 1st Column UC Subscript clone Baseline Math bar pipe bar symblom alpha mathematical right-angle Math bar pipe bar symblom 0 mathematical right-angle 2nd Column equals Math bar pipe bar symblom alpha mathematical right-angle Math bar pipe bar symblom alpha mathematical right-angle equals Math bar pipe bar symblom alpha alpha mathematical right-angle comma 2nd Row 1st Column UC Subscript clone Baseline Math bar pipe bar symblom beta mathematical right-angle Math bar pipe bar symblom 0 mathematical right-angle 2nd Column equals Math bar pipe bar symblom beta mathematical right-angle Math bar pipe bar symblom beta mathematical right-angle equals Math bar pipe bar symblom beta beta mathematical right-angle period EndLayout (1.59)

      Now consider a new state |δ⟩=(|α⟩+|β⟩)/2. By the definition of cloning: