Flexible Supercapacitors. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Flexible Supercapacitors - Группа авторов страница 23

Название: Flexible Supercapacitors

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119506157

isbn:

СКАЧАТЬ materials were synthesized as follows (Figure 2.13a): the sponge was cut into required shapes and then repeatedly dipped with SWCNTs solution. After drying, the electrochemical deposition process was performed to coat a PANI nanomaterials on the surface of the SWCNTs covered sponge. The mass loading of SWCNT and PANI was 2.2 and 4.1 mg cm−2, respectively.

Schematic illustrations of (a) synthesizing PANI at SWCNTs sponge composite electrodes. (b) Cross-sectional scheme of the fabricated PANI@SWCNTs sponge based SCs. (c) Real-time optical images of the SCs under compressing. (d) CV curves of the compressible SCs with increasing strains from 0% to 60%. (e) Photography of the patterned d Au current collector on PET plate. (f–h) Lighting test driven by four SCs showing the compressing and recovering process.

      Source: Reproduced with permission [75]. © 2015, Wiley‐VCH.

      2.3.2 Self‐Healable SCs

      Self‐healable 2D planar SCs are another attractive energy storage because they possess the advantage of 2D devices like small size, low weight, ease of handing in appearance as well as the ultralong lifespan of the stretchable electronics. As a typical example, Huang et.al fabricated a 2D planar self‐healable SC based on PAA dual cross linked by hydrogen bonding and vinyl hybrid silica nanoparticles (VSNPs) [31]. Figure 2.14d illustrated the schematics of the fabrication process of the highly stretchable and self‐healable SCs. As for electrode materials, CNT papers were synthesized by CVD, and then deposited with the PPy, which were attached on the both side of the self‐healable VSNPs‐PAA gel electrolyte‐based film to prepare a self‐healable planar SCs. Figure 2.14e showed the demonstration of and ionic conductivity of the self‐healed substrate. The wound in the VSNPs‐PAA film could be autonomously repaired via the intermolecular hydrogen bonds among the cross‐linked polymer chains on the VSNPs in 10 mins under the ambient condition, which has no effect on the ionic conductivity and mechanical properties of the VSNPs‐PAA film. The CV curves with different cut‐healing times were depicted in the Figure 2.14f. The fabricated self‐healable SCs exhibited a specific capacitance of 61.4 mF cm−2 at a scan rate of 10 mV s−1, which was kept unchanged even after four healing cycles.

      2.3.3 Stretchable Integrated System