Flexible Supercapacitors. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Flexible Supercapacitors - Группа авторов страница 21

Название: Flexible Supercapacitors

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119506157

isbn:

СКАЧАТЬ density of 11.5 W h kg−1. It also showed a stable electrochemical performance at the tensile strain of 30% due to the smooth deformation of serpentine interconnections. The MSC array with voltage window of 3 V can easily light a μ‐LED, as shown in Figure 2.9b. Even under bending and stretching, no noticeable degradation can be observed, demonstrating its good mechanical stability and wide application in wearable and portable electronics.

Schematic illustrations of (a) the fabrication procedures for a MWNT/Mn3O4 based planar stretchable MSC. (b) The encapsulation of the MSC. (c) The stretchable MSCs array with embedded liquid metal interconnections. (d) CV curves of the MSC array measured under different types of deformations.

      Source: Reproduced with permission [2]. © 2015, The Royal Society of Chemistry.

Schematic illustrations of (a) fabricating a stretchable MSC array on a PDMS substrate with serpentine interconnects. (b) Photographs of the μ-LEDs lighting test under bent and 30% stretched state.

      Source: Reproduced with permission [39]. © 2013, American Chemical Society.

Schematic illustrations of (a) the fabrication procedures of the stretchable MSC arrays. (b) Optical images of the stretchable MSC array under different types of deformations. (c) Real-time optical images of LED powered by MSC array. (d) normalized capacitance (C/C0) measured before and after deformation, respectively.

      Source: Reproduced with permission [72]. © 2017, Wiley‐VCH.

      2.2.3 3D Stretchable SCs

      The stretchability of 3D stretchable SCs are typically achieved by the configuration design, such as 3D cellular and pyramid structure that omits the utilization of elastic substrate, which is quite different with the strategy toward 1D fiber SCs and 2D planar SCs. Kirigami or patterning‐based editable technique is always employed to assemble the 3D stretchable SCs. Recently, many efforts have been devoted to design the 3D stretchable SCs, which can be divided into two types: cellular structure and editable SCs. The first one is to realize stretchability through cellular electrodes or embedding MSC arrays into a cellular structured elastic substrate. The later one represents the SCs devices arbitrary shape, which can be adjusted according to the demand of wearable electronics.

      2.2.3.1 Cellular Structure

Schematic illustrations of (a) optical images of the stretchable cellular CNT film under increasing strain. (b) CV curves under stretching. (c) Photographs of the “watch strap” powered by cellular MSC array. СКАЧАТЬ