Flexible Supercapacitors. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Flexible Supercapacitors - Группа авторов страница 20

Название: Flexible Supercapacitors

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119506157

isbn:

СКАЧАТЬ strains. The initial specific capacitances calculated from CV curves were 261 F g−1. It can be seen that no obvious change appeared when the SC was stretched to 30%. Moreover, the stretching cycle tests revealed that the SC maintained high mechanical strength and stability over 100 cycles.

      2.2.2.2 Omnidirectionally Stretchable Planar SCs

      Schematic illustrations of (a) the fabrication process of the stretchable SCs by buckling electrode materials on an elastomeric PDMS substrate. (b) SEM image of a buckled CNT macro film. (c) CV profiles of the stretchable SCs measured at 30% strain. Schematic illustrations of (a) fabrication process of the stretchable SCs by buckling electrode materials on an elastomeric PDMS substrate. (b) SEM image of a buckled CNT macro film. (c) CV profiles of the stretchable SCs measured at 30% strain.

      Source: Reproduced with permission [64]. © 2009, Wiley‐VCH.

      (d) Schematics of the stretchable SCs fabrication. (e) CV curves of the stretchable SCs at different tensile strains.

      Source: Reproduced with permission [65]. © 2014, The Royal Society of Chemistry.

Schematic illustrations of (a) the steps for fabricating omnidirectionally stretchable SC. (b) SEM image of the buckled CNT film. (c) Photos of buckled CNT film under various deformations. (d) Normalized electrical resistance of the stretchable SC under stretching-releasing cycles at a strain of 200%. (e) CV curves of the fabricated SC at various stretching states.

      Source: Reproduced with permission [66]. © 2016, American Chemical Society.

      2.2.2.3 Stretchable On‐Chip Micro Supercapacitors (MSCs)

      The obtained SWCNT electrodes based MSC array exhibited a capacitance of 100 μ F at the scan rate of 0.5 V s−1, СКАЧАТЬ