Genome Editing in Drug Discovery. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Genome Editing in Drug Discovery - Группа авторов страница 34

Название: Genome Editing in Drug Discovery

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119671398

isbn:

СКАЧАТЬ B.J. et al. (2013). Processing‐independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50: 488–503.

      245 Zhang, B., Ye, W., Ye, Y. et al. (2018). Structural insights into Cas13b‐guided CRISPR RNA maturation and recognition. Cell Res. 28: 1198–1201.

      246 Zhou, Y., Bravo, J.P.K., Taylor, H.N. et al. (2020). Structure of a type IV CRISPR‐Cas effector complex. bioRxiv.

       Klio Maratou1, Aaron T. Cheng2, Fiona M. Behan1, Ning Sun2, and Quinn Lu3

       1 Functional Genomics, R&D GlaxoSmithKline, Stevenage, UK

       2 Functional Genomics, R&D GlaxoSmithKline, Upper Providence, PA, USA

       3 Novel Human Genetics Research Unit, R&D GlaxoSmithKline, Upper Providence, PA, USA

      CRISPR genome editing technologies provide versatile tools for the genetic manipulation and screening of genes and pathways in mammalian cells and in model animals. Their applications in drug discovery are broad, including target discovery, target validation, mechanism of action, and target engagement studies (Lu et al. 2017). Since first described, many improvements and novel applications of the technology have been reported. The technologies include gene knock out (KO) via non‐homologous end joining (NHEJ) following CRISPR‐mediated double‐stranded break (DSB), gene knock in (KI) for SNP/mutation generation or gene insertion/gene tagging via homology‐directed repair (HDR) of DSB, and transcriptional or epigenetic regulation via fusion of an inactivated CRISPR Cas protein (“endonuclease dead” dCas9) with a transcriptional activator (CRISPR activation, CRISPRa) for upregulation of gene expression, with a transcriptional repressor (CRISPR interference, CRISPRi) for downregulation of gene expression, or with an epigenetic modifying enzyme (CRISPRepi) for DNA methylation or post‐translational modifications of histone proteins. While these platforms were largely developed by academic labs, their rapid implementation in biomedical and pharmaceutical research settings has been greatly facilitated by reagent providers and contract research organizations (CROs) that offer state‐of‐the‐art reagents and contract services. In fact, it is now routine practice for scientists to use commercially available CRISPR reagents for in‐house studies and/or to consider working with a CRO on a specific genome editing project. This article aims to summarize our learnings and provide guidance on the selection of appropriate reagents and/or CROs for CRISPR‐based studies.

      4.2.1 Publicly Available Resources

      CRISPR technologies have been quoted as being the “Swiss army knife” equivalent for the science world, due to the ease of their design and generation – as compared with zinc‐finger nucleases (ZFNs) and transcription activator‐like effector nucleases (TALENS) – and the diversity of their applications (Doench 2018; Mans et al. 2015). Furthermore, the “open‐source” culture of the CRISPR field has helped accelerate its continued innovation (Zhang 2019). This has been facilitated by numerous resources like web‐based tutorials, publicly available webinars, databases for data deposition, and annual CRISPR meetings. For example, a freely available resource called the Open Repository for CRISPR Screens (ORCS) (https://orcs.thebiogrid.org) was developed by the Biological General Repository for Interaction Datasets (BioGRID) (Oughtred et al. 2019), which enables researchers to search, filter, and download CRISPR screen datasets. Version 1.0.3 of the ORCS contains 895 CRISPR screens from 3 major model organism species and 629 cell lines. In addition, when novel methodologies are published, the associated constructs often become available through repositories like Addgene, an international nonprofit repository (Kamens 2015), to which over 350 labs have contributed. Reagent sharing has the advantage that it enables vigorous testing of the new technology and encourages rapid further improvements. However, Addgene is not accessible to for‐profit organizations; thus, for industry/biotech institutions, the only access to reagents is via commercial providers.

      4.2.2 Cas9 Enzymes

Company Location Reagents
Agilent Santa Clara, CA Oligo library synthesis; synthetic gRNA and libraries
Cellecta Mountain View, CA Cas9 and gRNA expression vectors, lentiviral gRNA libraries
GenScript Jiangning, China Cas9 nuclease; Cas9 and gRNA expression vectors; lentiviral gRNA libraries
Horizon Discovery СКАЧАТЬ