Genome Editing in Drug Discovery. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Genome Editing in Drug Discovery - Группа авторов страница 29

Название: Genome Editing in Drug Discovery

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119671398

isbn:

СКАЧАТЬ O.O. et al. (2017). RNA editing with CRISPR‐Cas13. Science 358: 1019–1027.

      35 Datsenko, K.A., Pougach, K., Tikhonov, A. et al. (2012). Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3: 945.

      36 Davidson, A.R., Lu, W.T., Stanley, S.Y. et al. (2020). Anti‐CRISPRs: protein inhibitors of CRISPR‐Cas systems. Annu. Rev. Biochem. 89: 309–332.

      37 Deltcheva, E., Chylinski, K., Sharma, C.M. et al. (2011). CRISPR RNA maturation by trans‐encoded small RNA and host factor RNase III. Nature 471: 602–607.

      38 Deng, L., Garrett, R.A., Shah, S.A. et al. (2013). A novel interference mechanism by a Type IIIB CRISPR‐Cmr module in Sulfolobus. Mol. Microbiol. 87: 1088–1099.

      39 Deweirdt, P.C., Sanson, K.R., Sangree, A.K. et al. (2021). Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39: 94–104.

      40 Dicarlo, J.E., Norville, J.E., Mali, P. et al. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR‐Cas systems. Nucleic Acids Res. 41: 4336–4343.

      41 Ding, Q., Regan, S.N., Xia, Y. et al. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12: 393–394.

      42 Doench, J.G., Fusi, N., Sullender, M. et al. (2016). Optimized sgRNA design to maximize activity and minimize off‐target effects of CRISPR‐Cas9. Nat. Biotechnol. 34: 184–191.

      43 Dolan, A.E., Hou, Z., Xiao, Y. et al. (2019). Introducing a spectrum of long‐range genomic deletions in human embryonic stem cells using Type I CRISPR‐Cas. Mol. Cell 74: 936–950. e5.

      44 Dugar, G., Leenay, R.T., Eisenbart, S.K. et al. (2018). CRISPR RNA‐dependent binding and cleavage of endogenous RNAs by the campylobacter jejuni Cas9. Mol. Cell 69: 893–905. e7.

      45 East‐Seletsky, A., O'connell, M.R., Knight, S.C. et al. (2016). Two distinct RNase activities of CRISPR‐C2c2 enable guide‐RNA processing and RNA detection. Nature 538: 270–273.

      46 Edraki, A., Mir, A., Ibraheim, R. et al. (2019). A compact, high‐accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73: 714–726. e4.

      47 Elmore, J.R., Sheppard, N.F., Ramia, N. et al. (2016). Bipartite recognition of target RNAs activates DNA cleavage by the Type III‐B CRISPR‐Cas system. Genes Dev. 30: 447–459.

      48 Estrella, M.A., Kuo, F.T., and Bailey, S. (2016). RNA‐activated DNA cleavage by the Type III‐B CRISPR‐Cas effector complex. Genes Dev. 30: 460–470.

      49 Esvelt, K.M., Mali, P., Braff, J.L. et al. (2013). Orthogonal Cas9 proteins for RNA‐guided gene regulation and editing. Nat. Methods 10: 1116–1121.

      50 Faure, G., Makarova, K.S., and Koonin, E.V. (2019a). CRISPR‐Cas: complex functional networks and multiple roles beyond adaptive immunity. J. Mol. Biol. 431: 3–20.

      51 Faure, G., Shmakov, S.A., Yan, W.X. et al. (2019b). CRISPR–Cas in mobile genetic elements: counter‐defence and beyond. Nat. Rev. Microbiol. 17: 513–525.

      52 Fonfara, I., Richter, H., Bratovič, M. et al. (2016). The CRISPR‐associated DNA‐cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532: 517–521.

      53 Friedland, A.E., Tzur, Y.B., Esvelt, K.M. et al. (2013). Heritable genome editing in C. elegans via a CRISPR‐Cas9 system. Nat. Methods 10: 741–743.

      54 Garneau, J.E., Dupuis, M.E., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.

      55 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9‐crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109: E2579–E2586.

      56 Gasiunas, G., Young, J.K., Karvelis, T. et al. (2020). A catalogue of biochemically diverse CRISPR‐Cas9 orthologs. Nat. Commun. 11: 5512.

      57 Gilbert, L.A., Larson, M.H., Morsut, L. et al. (2013). CRISPR‐mediated modular RNA‐guided regulation of transcription in eukaryotes. Cell 154: 442–451.

      58 Gilbert, L.A., Horlbeck, M.A., Adamson, B. et al. (2014). Genome‐scale CRISPR‐mediated control of gene repression and activation. Cell 159: 647–661.

      59 Godde, J.S. and Bickerton, A. (2006). The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62: 718–729.

      60 Goldberg, G.W., Jiang, W., Bikard, D., and Marraffini, L.A. (2014). Conditional tolerance of temperate phages via transcription‐dependent CRISPR‐Cas targeting. Nature 514: 633–637.

      61 Gonzalez‐Delgado, A., Mestre, M.R., Martinez‐Abarca, F., and Toro, N. (2019). Spacer acquisition from RNA mediated by a natural reverse transcriptase‐Cas1 fusion protein associated with a Type III‐D CRISPR‐Cas system in Vibrio vulnificus. Nucleic Acids Res. 47: 10202–10211.

      62 Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W. et al. (2017). Nucleic acid detection with CRISPR‐Cas13a/C2c2. Science 356: 438–442.

      63 Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J. et al. (2018). Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360: 439–444.

      64 Grieger, J.C. and Samulski, R.J. (2005). Packaging capacity of adeno‐associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J. Virol. 79: 9933–9944.

      65 Grissa, I., Vergnaud, G., and Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 8: 172.

      66 Hale, C., Kleppe, K., Terns, R.M., and Terns, M.P. (2008). Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14: 2572–2579.

      67 Hale, C.R., Zhao, P., Olson, S. et al. (2009). RNA‐guided RNA cleavage by a CRISPR RNA‐Cas protein complex. Cell 139: 945–956.

      68 Hampton, H.G., Watson, B.N.J., and Fineran, P.C. (2020). The arms race between bacteria and their phage foes. Nature 577: 327–336.

      69 Han, W., Li, Y., Deng, L. et al. (2017). A Type III‐B CRISPR‐Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res. 45: 1983–1993.

      70 Harrington, L.B., Paez‐Espino, D., Staahl, B.T. et al. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8: 1424.

      71 Harrington, L.B., Burstein, D., Chen, J.S. et al. (2018). Programmed DNA destruction by miniature CRISPR‐Cas14 enzymes. Science 362: 839–842.

      72 Hatoum‐Aslan, A., Maniv, I., Samai, P., and Marraffini, L.A. (2014). Genetic characterization of antiplasmid immunity through a type III‐A CRISPR‐Cas system. J. Bacteriol. 196: 310–317.

      73 Haurwitz, R.E., Jinek, M., Wiedenheft, B. et al. (2010). Sequence‐ and structure‐specific RNA processing by a CRISPR endonuclease. Science 329: 1355–1358.

      74 Hayes, R.P., Xiao, Y., Ding, F. et al. (2016). Structural basis for promiscuous PAM recognition in Type I‐E Cascade from E. coli. Nature 530: 499–503.

      75 Heler, R., Samai, P., Modell, J.W. et al. (2015). Cas9 specifies functional viral targets СКАЧАТЬ