Название: Dry Beans and Pulses Production, Processing, and Nutrition
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Техническая литература
isbn: 9781119777137
isbn:
115 Swegarden, H.R., Sheaffer, C.C. & Michaels, T.E. (2016). Yield stability of heirloom dry bean (Phaseolus vulgaris L.) cultivars in Midwest organic production. HortScience 51: 8–14.
116 Terán, H., Lema, M., Webster, D. & Singh, S.P. (2009). 75 years of breeding pinto bean for resistance to diseases in the United States. Euphytica 167: 341–351.
117 Thomas, C.V. & Waines, J.G. (1984). Fertile backcross and allotetraploid plants from crosses between tepary beans and common beans. Journal of Heredity 75: 93–98.
118 Thompson, M.D., Brick, M.A., McGinley, J.N. & Thompson, H.J. (2009). Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Science 49: 179–186.
119 Tock, A.J., Fourie, D., Walley, D.G., Holub, E.B., Soler, A., Cichy, K.A., Pastor‐Corrales, M.A., Song, Q., Porch, T.G., Hart, J.P., Vasconcellos, R.C.C., Vicente, J.G., Barker, G.C. & Miklas, P.N. (2017). Genome‐wide linkage and association mapping of halo blight resistance in common bean to race 6 of the globally important bacterial pathogen. Frontiers in Plant Sciences 8: 1170.
120 Trapp, J., Urrea, C.A., Cregan, P.B. & Miklas, P.N. (2015). QTL for yield under multiple stress and drought conditions in a dry bean population. Crop Science 55: 1596–1607.
121 USDA‐NASS (US Dept of Agriculture, National Agricultural Statistics Service). (2020a). Acreage (Report # ISSN:1949‐1522). Available at https://www.nass.usda.gov/Publications/Todays_Reports/reports/acrg0620.pdf (accessed March 1, 2021).
122 USDA‐NASS (US Dept of Agriculture, National Agricultural Statistics Service). (2020b). Quick Stats. Available at https://quickstats.nass.usda.gov/ (accessed March 1, 2021).
123 van der Merwe, D., Osthoff, G.& Pretorius, A.J. (2006). Comparison of the canning quality of small white beans (Phaseolus vulgaris L.) canned in tomato sauce by a small‐scale and an industrial method. Journal of the Science of Food & Agriculture 86: 1046–1056.
124 Vandemark, G.J., Fourie, D. & Miklas, P.N. (2008). Genotyping with real‐time PCR reveals recessive epistasis between independent QTL conferring resistance to common bacterial blight in dry bean. Theoretical & Applied Genetics 117: 513–522.
125 Vandemark, G.J., Brick, M.A., Osorno, J.M., Kelly, J.D. & Urrea, C.A. (2014). Edible grain legumes. In: Yield Gains in Major U.S. Field Crops, vol. 33 (eds. S. Smith, B. Diers, J. Specht, B. Carver B), pp. 87–123. Madison, WA: ASA, CSSA, and SSSA.
126 Vasconcellos, R.C.C., Oraguzie, O.B., Soler, A., Arkwazee, H., Myers, J., Fereira, J.J., Song, Q., McClean, P. & Miklas, P.N. (2017). Meta‐QTL for resistance to white mold in common bean. PLoS One 12: 0171685.
127 Vaz Bisneta, M. & Gonçalves‐Vidigal, M.C. (2020). Integration of anthracnose resistance loci and RLK and NBS‐LRR‐encoding genes in the Phaseolus vulgaris L. genome. Crop Science 60: 2901–2918.
128 Veltcheva, M., Svetleva, D., Petkova, S. & Perl, A. (2005). In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.): Problems and progress. Scientia Horticulturae 107: 2–10.
129 Viteri, D.M., Cregan, P.B., Trapp, J.J., Miklas, P.N. & Singh, S.P. (2014). A new common bacterial blight resistance QTL in VAX 1 common bean and interaction of the new QTL, SAP6, and SU91 with bacterial strains. Crop Science 54: 1598–1608.
130 Wessells, K.R. & Brown, K.H. (2012). Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PloS One 7: 50568.
131 White, P.J. & Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182: 49–84.
132 Wilker, J., Navabi, A., Rajcan, I., Marsolais, F., Hill, B., Torkamaneh, D. & Pauls, K.P. (2019). Agronomic performance and nitrogen fixation of heirloom and conventional dry bean varieties under low‐nitrogen field conditions. Frontiers in Plant Science 10: 952.
133 Wu, J., Wang, L., Fu, J., Chen, J., Wei, S., Zhang, S., Zhang, J., Tang, Y., Chen, M., Zhu, J. & Lei, L. (2020). Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nature Genetics 52: 118–125.
134 Zaidi, S.S.A, Mahas A., Vanderschuren H., Mahfouz, M.M. (2020). Engineering crops of the future: CRISPR approaches to develop climate‐resilient and disease‐resistant plants. Genome Biology 21: 1–19.
135 Zhou, J., Khot, L.R., Boydston, R.A., Miklas, P.N. & Porter, L. (2017). Low altitude remote sensing technologies for crop stress monitoring: a case study on spatial and temporal monitoring of irrigated pinto bean. Precision Agriculture 19: 555–569.
3 Physical and Physiological Characteristics and Market Classes of Common Beans
Mark A. Uebersax Carlos Urrea and Muhammad Siddiq
Commercial market classes of common beans
Physiology of common bean seed Structural and anatomical features of bean seed Seed coat Cotyledon Embryo
Characteristics of seed size and shape
Seed coat pigmentation and color
USDA standards for common beans and selected pulses
INTRODUCTION
Common beans originated in Latin America where its wild progenitor (P. vulgaris var. mexicanus and var. aborigenous) has a wide distribution ranging from northern Mexico to northwestern Argentina (Gepts 2001; Grigolo and Fioreze 2018; Centeno‐González et al. 2021). Secondary centers of diversification are East Africa and Europe, since the Phaseolus beans СКАЧАТЬ