Polymer Composites for Electrical Engineering. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Polymer Composites for Electrical Engineering - Группа авторов страница 18

СКАЧАТЬ Zhang, G., Liu, F. et al. (2015). Solution‐processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science 8 (3): 922–931.

      24 24 Yuan, C., Zhou, Y., Zhu, Y. et al. (2020). Polymer/molecular semiconductor all‐organic composites for high‐temperature dielectric energy storage. Nature Communications 11: 3919.

      25 25 Li, J., Seok, S.I., Chu, B. et al. (2009). Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Advanced Materials 21 (2): 217–221.

      26 26 Li, J., Claude, J., Norena‐Franco, L.E. et al. (2008). Electrical energy storage in ferroelectric polymer nanocomposites containing surface‐functionalized BaTiO3 nanoparticles. Chemistry of Materials 20 (20): 6304–6306.

      27 27 Yao, L., Pan, Z., Zhai, J. et al. (2018). High‐energy‐density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Composites Part A: Applied Science and Manufacturing 109: 48–54.

      28 28 Lu, X., Zhang, L., Tong, Y. et al. (2019). BST‐P(VDF‐CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy‐storage density. Composites Part B: Engineering 168: 34–43.

      29 29 Jain, A., Prashanth, K.J., Sharma, A.K. et al. (2015). Dielectric and piezoelectric properties of PVDF/PZT composites: a review. Polymer Engineering & Science 55 (7): 1589–1616.

      30 30 Shen, Y., Gu, A., Liang, G. et al. (2010). High performance CaCu3Ti4O12/cyanate ester composites with excellent dielectric properties and thermal resistance. Composites Part A: Applied Science and Manufacturing 41 (11): 1668–1676.

      31 31 Chen, S.S., Hu, J., Gao, L. et al. (2016). Enhanced breakdown strength and energy density in PVDF nanocomposites with functionalized MgO nanoparticles. RSC Advances 6 (40): 33599–33605.

      32 32 Kim, S.H., Kang, H.S., Sohn, E.H. et al. (2020). High discharge energy density and efficiency in newly designed PVDF@SiO2‐PVDF composites for energy capacitors. ACS Applied Energy Materials 3 (9): 8937–8945.

      33 33 Li, H., Ai, D., Ren, L. et al. (2019). Scalable polymer nanocomposites with record high‐temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Advanced Materials 31 (23): 1900875.

      34 34 Zhang, H., Marwat, M.A., Xie, B. et al. (2019). Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Applied Materials & Interfaces 12 (1): 1–37.

      35 35 Tang, H., Lin, Y., and Sodano, H.A. (2013). Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Advanced Energy Materials 3 (4): 451–456.

      36 36 Shen, Z.H., Wang, J.J., Lin, Y. et al. (2018). High‐throughput phase‐field design of high‐energy‐density polymer nanocomposites. Advanced Materials 30 (2): 1704380.

      37 37 Shen, X., Zheng, Q., and Kim, J.K. (2021). Rational design of two‐dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science 115: 100708.

      38 38 Pan, Z., Liu, B., Zhai, J. et al. (2017). NaNbO3 two‐dimensional platelets induced highly energy storage density in trilayered architecture composites. Nano Energy 40: 587–595.

      39 39 Pan, Z., Ding, Q., Yao, L. et al. (2019). Simultaneously enhanced discharge energy density and efficiency in nanocomposite film capacitors utilizing two‐dimensional NaNbO3@ Al2O3 platelets. Nanoscale 11 (21): 10546–10554.

      40 40 Bao, Z., Hou, C., Shen, Z. et al. (2020). Negatively charged nanosheets significantly enhance the energy‐storage capability of polymer‐based nanocomposites. Advanced Materials 32: 1907227.

      41 41 Zhu, Y., Yao, H., Jiang, P. et al. (2018). Two‐dimensional high‐k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. The Journal of Physical Chemistry C 122 (32): 18282–18293.

      42 42 Ma, Y., Tong, W., Wang, W. et al. (2018). Montmorillonite/PVDF‐HFP‐based energy conversion and storage films with enhanced piezoelectric and dielectric properties. Composites Science and Technology 168: 397–403.

      43 43 Xie, Y., Wang, J., Yu, Y. et al. (2018). Enhancing breakdown strength and energy storage performance of PVDF‐based nanocomposites by adding exfoliated boron nitride. Applied Surface Science 440: 1150–1158.

      44 44 Wang, Y., Li, Z., Wu, C. et al. (2020). High‐temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets. Chemical Engineering Journal 401: 126093.

      45 45 Pohl, H.A. and Crane, J.S. (1972). Dielectrophoretic force. Journal of Theoretical Biology 37 (1): 1–13.

      46 46 Yao, S.H., Yuan, J.K., Zhou, T. et al. (2011). Stretch‐modulated carbon nanotube alignment in ferroelectric polymer composites: characterization of the orientation state and its influence on the dielectric properties. The Journal of Physical Chemistry C 115 (40): 20011–20017.

      47 47 Agarwal, S., Greiner, A., and Wendorff, J.H. (2013). Functional materials by electrospinning of polymers. Progress in Polymer Science 38 (6): 963–991.

      48 48 Banerjee, P., Perez, I., Henn‐Lecordier, L. et al. (2009). Nanotubular metal‐insulator‐metal capacitor arrays for energy storage. Nature Nanotechnology 4 (5): 292–296.

      49 49 Liao, S., Shen, Z., Pan, H. et al. (2017). A surface‐modified TiO2 nanorod array/P (VDF‐HFP) dielectric capacitor with ultra high energy density and efficiency. Journal of Materials Chemistry C 5 (48): 12777–12784.

      50 50 Zeng, X., Ye, L., Yu, S. et al. (2015). Facile preparation of superelastic and ultralow dielectric boron nitride nanosheet aerogels via freeze‐casting process. Chemistry of Materials 27 (17): 5849–5855.

      51 51 Li, B., Xidas, P.I., and Manias, E. (2018). High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Applied Nano Materials 1 (7): 3520–3530.

      52 52 Xie, B., Zhang, H., Zhang, Q. et al. (2017). Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry A 5 (13): 6070–6078.

      53 53 Luo, H., Zhou, X., Ellingford, C. et al. (2019). Interface design for high energy density polymer nanocomposites. Chemical Society Reviews 48 (16): 4424–4465.

      54 54 Zhou, Y., He, J., Hu, J. et al. (2016). Surface‐modified MgO nanoparticle enhances the mechanical and direct‐current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics. Journal of Applied Polymer Science 133 (1): 42863.

      55 55 Zhang, X., Li, B.W., Dong, L. et al. (2018). Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Advanced Materials Interfaces 5 (11): 1800096.

      56 56 Zhou, Y., Dang, B., Wang, H. et al. (2018). Polypropylene‐based ternary nanocomposites for recyclable high‐voltage direct‐current cable insulation. Composites Science and Technology 165: 168–174.

      57 57 Hu, P., Gao, S., Zhang, Y. et al. (2018). Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite. Composites Science and Technology 156: 109–116.

      58 58 Huang, X. and Jiang, P. (2015). Core‐shell structured high‐k polymer СКАЧАТЬ