Polymer Composites for Electrical Engineering. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Polymer Composites for Electrical Engineering - Группа авторов страница 17

СКАЧАТЬ storage performance of the coated films.

      Advances in the nanomaterials and nanotechnology have promoted the development of polymer composites for electrical energy storage application. The field of dielectric polymer composites has witnessed great progress, and the progress is still accelerating continuously. The discharged energy density achieved in the polymer composites has already exceeded 20 J/cm3, which is comparable to other energy storage methods, such as electrochemical capacitors. Various innovative material structure designs and processing methods, such as nanofiller morphology control, nanofiller surface modification, nanofiller alignment, and multilayer‐structured composites, have been proposed to improve the performance of the dielectric polymer composites.

Schematic illustration of (a) the fabrication process of sandwich-structured films; (b) cross-sectional SEM pictures of PBP1, PBP3, PBP5, and PBP7, respectively (all scale bars are 2 μm); (c) Weibull breakdown strength; and (d) maximum discharged energy density and charge/discharge efficiency of the series films, comparison of electric field distribution, and electrical tree propagation path of (e) PBP3 and (f) PVDF/BNNS composites.

      Source: Zhu et al. [94]. Reproduced with permission of John Wiley & Sons.

      1 1 Li, Q., Yao, F., Liu, Y. et al. (2018). High‐temperature dielectric materials for electrical energy storage. Annual Review of Materials Research 48: 219–243.

      2 2 Chen, Q., Shen, Y., Zhang, S. et al. (2015). Polymer‐based dielectrics with high energy storage density. Annual Review of Materials Research 45: 433–458.

      3 3 Huang, X., Sun, B., Zhu, Y. et al. (2019). High‐k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science 100: 187–225.

      4 4 Dang, Z.M., Zheng, M.S., and Zha, J.W. (2016). 1D/2D carbon nanomaterial‐polymer dielectric composites with high permittivity for power energy storage applications. Small 12 (13): 1688–1701.

      5 5 Zhou, Y. and Wang, Q. (2020). Advanced polymer dielectrics for high temperature capacitive energy storage. Journal of Applied Physics 127 (24): 240902.

      6 6 Pan, J., Li, K., Chuayprakong, S. et al. (2010). High‐temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage. ACS Applied Materials & Interfaces 2 (5): 1286–1289.

      7 7 Dang, Z.M., Yuan, J.K., Yao, S.H. et al. (2013). Flexible nanodielectric materials with high permittivity for power energy storage. Advanced Materials 25 (44): 6334–6365.

      8 8 Li, Q. and Wang, Q. (2016). Ferroelectric polymers and their energy‐related applications. Macromolecular Chemistry and Physics 217 (11): 1228–1244.

      9 9 Thakur, V.K. and Gupta, R.K. (2016). Recent progress on ferroelectric polymer‐based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews 116 (7): 4260–4317.

      10 10 Li, H., Liu, F., Fan, B. et al. (2018). Nanostructured ferroelectric‐polymer composites for capacitive energy storage. Small Methods 2 (6): 1700399.

      11 11 Rabuffi, M. and Picci, G. (2002). Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Transactions on Plasma Science 30 (5): 1939–1942.

      12 12 Shen, Y., Zhang, X., Li, M. et al. (2017). Polymer nanocomposite dielectrics for electrical energy storage. National Science Review 4 (1): 23–25.

      13 13 Wang, Q. and Zhu, L. (2011). Polymer nanocomposites for electrical energy storage. Journal of Polymer Science Part B: Polymer Physics 49 (20): 1421–1429.

      14 14 Li, Q. and Cheng, S. (2020). Polymer nanocomposites for high‐energy‐density capacitor dielectrics: fundamentals and recent progress. IEEE Electrical Insulation Magazine 36 (2): 7–28.

      15 15 Cao, Y., Irwin, P.C., and Younsi, K. (2004). The future of nanodielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation 11 (5): 797–807.

      16 16 Yao, K., Chen, S., Rahimabady, M. et al. (2011). Nonlinear dielectric thin films for high‐power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58 (9): 1968–1974.

      17 17 Fan, B., Liu, F., Yang, G. et al. (2018). Dielectric materials for high‐temperature capacitors. IET Nanodielectrics 1 (1): 32–40.

      18 18 Sebastian, M.T. and Jantunen, H. (2008). Low loss dielectric materials for LTCC applications: a review. International Materials Reviews 53 (2): 57–90.

      19 19 Sarjeant, W.J., Zirnheld, J.F., and MacDougall, W. (1998). Capacitors. IEEE Transactions on Plasma Science 26 (5): 1368–1392.

      20 20 Sarjeant, W.J., Clelland, I.W., and Price, R.A. (2001). Capacitive components for power electronics. Proceedings of the IEEE 89 (6): 846–855.

      21 21 Yao, Z., Song, Z., Hao, H. et al. (2017). Homogeneous/inhomogeneous‐structured dielectrics and their energy‐storage performances. Advanced Materials 29 (20): 1601727.

      22 22 Li, Q., Chen, L., Gadinski, M.R. et al. (2015). Flexible СКАЧАТЬ