Название: Microbial Interactions at Nanobiotechnology Interfaces
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Отраслевые издания
isbn: 9781119617174
isbn:
59 Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.
60 Kang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413.
61 Kaufman, E. D., Belyea, J., Johnson, M. C., Nicholson, Z. M., Ricks, J. L., Shah, P. K., … Blomberg, E. (2007). Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and ζ‐potential measurements. Langmuir, 23(11), 6053–6062.
62 Kaur, P., & Peterson, E. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928.
63 Khameneh, B., Diab, R., Ghazvini, K., & Bazzaz, B. S. F. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial Pathogenesis, 95, 32–42.
64 Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., …Khan, A. M. (2016). Sol‐gel synthesis of thorn‐like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano‐antibiotics. Scientific Reports, 6, 27689.
65 Kim, J. S., Kuk, E., Yu, K. N., Kim, J.‐H., Park, S. J., Lee, H. J., … Hwang, C.‐Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101.
66 Knopp, D., Tang, D., & Niessner, R. (2009). Bioanalytical applications of biomolecule‐functionalized nanometer‐sized doped silica particles. Analytica Chimica Acta, 647(1), 14–30.
67 Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., & Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453), 622–625.
68 Kühn, K. P., Chaberny, I. F., Massholder, K., Stickler, M., Benz, V. W., Sonntag, H.‐G., & Erdinger, L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere, 53(1), 71–77.
69 Le, A.‐T., Tam, P. D., Huy, P., Huy, T. Q., Van Hieu, N., Kudrinskiy, A., & Krutyakov, Y. A. (2010). Synthesis of oleic acid‐stabilized silver nanoparticles and analysis of their antibacterial activity. Materials Science and Engineering C, 30(6), 910–916.
70 Lee, A., Mao, W., Warren, M. S., Mistry, A., Hoshino, K., Okumura, R., … Lomovskaya, O. (2000). Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. Journal of Bacteriology, 182(11), 3142–3150.
71 Lee, W., Kang, S. H., Kim, J.‐Y., Kolekar, G. B., Sung, Y.‐E., & Han, S.‐H. (2009). TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum‐dot‐sensitized solar cells. Nanotechnology, 20(33), 335706.
72 Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371.
73 Li, C., Fu, R., Yu, C., Li, Z., Guan, H., Hu, D., … Lu, L. (2013). Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: A preclinical study. International Journal of Nanomedicine, 8, 4131.
74 Li, H., Luo, Y.‐F., Williams, B. J., Blackwell, T. S., & Xie, C.‐M. (2012). Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. International Journal of Medical Microbiology, 302(2), 63–68.
75 Li, M., Zhu, L., & Lin, D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environmental Science & Technology, 45(5), 1977–1983.
76 Lim, E.‐K., Chung, B. H., & Chung, S. J. (2018). Recent advances in pH‐sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Current Drug Targets, 19(4), 300–317.
77 Lin, C.‐C., Yeh, Y.‐C., Yang, C.‐Y., Chen, C.‐L., Chen, G.‐F., Chen, C.‐C., & Wu, Y.‐C. (2002). Selective binding of mannose‐encapsulated gold nanoparticles to type 1 pili in Escherichia coli. Journal of the American Chemical Society, 124(14), 3508–3509.
78 Liu, J., Chen, D., Peters, B. M., Li, L., Li, B., Xu, Z., & Shirliff, M. E. (2016). Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin‐resistant Staphylococcus aureus. Microbial Pathogenesis, 101, 56–67.
79 Liu, J.‐L., Zhang, W.‐J., Li, X.‐D., Yang, N., Pan, W.‐S., Kong, J., & Zhang, J.‐S. (2016). Sustained‐release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth. International Journal of Ophthalmology, 9(5), 643.
80 Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., … Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.
81 Liu, Y., Tee, J. K., & Chiu, G. N. C. (2015). Dendrimers in oral drug delivery application: Current explorations, toxicity issues and strategies for improvement. Current Pharmaceutical Design, 21(19), 2629–2642.
82 Luckarift, H. R., Balasubramanian, S., Paliwal, S., Johnson, G. R., & Simonian, A. L. (2007). Enzyme‐encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids and Surfaces B: Biointerfaces, 58(1), 28–33.
83 Machado, S., Pacheco, J., Nouws, H., Albergaria, J. T., & Delerue‐Matos, C. (2015). Characterization of green zero‐valent iron nanoparticles produced with tree leaf extracts. Science of the Total Environment, 533, 76–81.
84 Markowska‐Szczupak, A., Ulfig, K., & Morawski, A. (2011). The application of titanium dioxide for deactivation of bioparticulates: An overview. Catalysis Today, 169(1), 249–257.
85 Martinez, J. (2018). Ecology and evolution of chromosomal gene transfer between environmental microorganisms and pathogens. Microbiology Spectrum, 6(1), 1–16.
86 Mazille, F., Moncayo‐Lasso, A., Spuhler, D., Serra, A., Peral, J., Benítez, N., & Pulgarin, C. (2010). Comparative evaluation of polymer surface functionalization techniques before iron oxide deposition. Activity of the iron oxide‐coated polymer films in the photo‐assisted degradation of organic pollutants and inactivation of bacteria. Chemical Engineering Journal, 160(1), 176–184.
87 Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in Enterococci. Expert Review of Anti‐infective Therapy, 12(10), 1221–1236.
88 Miola, M., Fucale, G., Maina, G., & Verné, E. (2015). Antibacterial and bioactive composite bone cements containing surface silver‐doped glass particles. Biomedical Materials, 10(5), 055014.
89 Mokerov, V., Fedorov, Y. V., Velikovski, L., & Scherbakova, M. Y. (2001). New quantum dot transistor. Nanotechnology, 12(4), 552.
90 Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.
91 Mukherjee, A., СКАЧАТЬ