Microbial Interactions at Nanobiotechnology Interfaces. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Microbial Interactions at Nanobiotechnology Interfaces - Группа авторов страница 20

СКАЧАТЬ of exposed anatase (001) crystal facet. The anatase crystal of TiO2 is generally present in a truncated octahedral bipyramid shape, which is composed of eight less‐reactive (101) facets in the sides added with two highly reactive (001) facets in the top and bottom. However, during synthesis, the highly reactive facets tend to reduce their surface area to minimize the surface free energy. The use of capping agents such as hydrofluoric acid in the synthesis can bind and stabilize the reactive facets (Ong et al., 2014).

      Tong et al. (2013) prepared different shapes of TiO2 NMs such as nanorods, nanotubes, and nanosheets with exposed high‐reactive (001) facets. All the nanostructures with more exposed (001) facets produced high hydroxyl radicals in comparison to classical TiO2 NPs P25 (25 nm). Though it enhanced the photocatalytic activity, the antimicrobial property of nanostructures did not follow the same trend where P25 exhibited the highest antimicrobial activity followed by nanorods, nanosheets, and nanotubes, respectively. This has been attributed to the aspect ratio of the nanostructures where the interaction of bacteria and NMs depends on the surface area of the NM. The low antimicrobial profile of the elongated structures such as nanotubes, nanorods, and nanosheets could be attributed to reduced or limited exposure of ROS producing surface to bacterial cells. Since, the elongated nanostructures generally tend to stack over each other due to their strong van der Waals attraction forces (Tong et al., 2013).

      Such a direct correlation of the active facets and antimicrobial property has also been found true in the case of silver NPs. In the case of silver, facet (111) is a highly atomic dense lattice that interacts with bacterial cell surface directly and causes membrane damage in comparison to less atomic dense (100) facets. Pal et al. (2007) studied the antibacterial activity of the silver NPs of different shapes against E. coli. Silver NMs with truncated triangular nanoplates exhibited higher antibacterial activity in comparison to spherical and rod‐shaped NMs. Bacterial cell treated with the triangle‐shaped nanoplates having (111) lattice plane showed drastic changes in the membrane, which caused rupture and cell death. This study clearly indicated in addition to the nano‐size of the material, the morphology of NM having (111) lattice plane enhanced the antimicrobial property of silver NMs (Pal et al., 2007).