Microbial Interactions at Nanobiotechnology Interfaces. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Microbial Interactions at Nanobiotechnology Interfaces - Группа авторов страница 23

СКАЧАТЬ J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape‐dependent antimicrobial activities of silver nanoparticles. International Journal of Nanomedicine, 14, 2773.

      24 Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668.

      25 Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303(6–7), 287–292.

      26 Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293(5533), 1289–1292.

      27 Daeihamed, M., Dadashzadeh, S., Haeri, A., & Faghih Akhlaghi, M. (2017). Potential of liposomes for enhancement of oral drug absorption. Current Drug Delivery, 14(2), 289–303.

      28 Daima, H. K., & Bansal, V. (2015). Influence of physicochemical properties of nanomaterials on their antibacterial applications. In M. Owais (Ed.), Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases (pp. 151–166). Elsevier.

      29 Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831–1831.

      30 Della Valle, C., Visai, L., Santin, M., Cigada, A., Candiani, G., Pezzoli, D., … Chiesa, R. (2012). A novel antibacterial modification treatment of titanium capable to improve osseointegration. The International Journal of Artificial Organs, 35(10), 864–875.

      31 Dorobantu, L. S., Fallone, C., Noble, A. J., Veinot, J., Ma, G., Goss, G. G., & Burrell, R. E. (2015). Toxicity of silver nanoparticles against bacteria, yeast, and algae. Journal of Nanoparticle Research, 17(4), 172.

      32 Drake, D. R., Brogden, K. A., Dawson, D. V., & Wertz, P. W. (2008). Thematic review series: Skin lipids. Antimicrobial lipids at the skin surface. Journal of Lipid Research, 49(1), 4–11.

      33 Ealias, A. M., & Saravanakumar, M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. Paper presented at the P Conf. Ser. Mater. Sci. Eng. 263 (2017) 032019, May 2–3 2017, VIT university, Vellore, Tamil Nadu, India.

      34  El Badawy, A. M., Silva, R. G., Morris, B., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2010). Surface charge‐dependent toxicity of silver nanoparticles. Environmental Science & Technology, 45(1), 283–287.

      35 Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho‐Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV‐1. Journal of Nanobiotechnology, 3(1), 6.

      36 Fajardo, A., Martínez‐Martín, N., Mercadillo, M., Galán, J. C., Ghysels, B., Matthijs, S., … Baquero, F. (2008). The neglected intrinsic resistome of bacterial pathogens. PLoS One, 3(2), e1619.

      37 Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against Gram‐positive and Gram‐negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103–109.

      38 Feng, Q. L., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.

      39 Fernandez‐Lopez, S., Kim, H.‐S., Choi, E. C., Delgado, M., Granja, J. R., Khasanov, A., … Wilcoxen, K. M. (2001). Antibacterial agents based on the cyclic D, L‐α‐peptide architecture. Nature, 412(6845), 452.

      40 Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB Life, 66(8), 572–577.

      41 Gao, M., Sun, L., Wang, Z., & Zhao, Y. (2013). Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Materials Science and Engineering C, 33(1), 397–404.

      42 Gardini, D., Lüscher, C. J., Struve, C., & Krogfelt, K. A. (2018). Tailored nanomaterials for antimicrobial applications. In A. Barhoum & A. S. H. Makhlouf (Eds.), Fundamentals of Nanoparticles (pp. 71–104). Elsevier.

      43 Gilbertson, L. M., Albalghiti, E. M., Fishman, Z. S., Perreault, F. O., Corredor, C., Posner, J. D., … Zimmerman, J. B. (2016). Shape‐dependent surface reactivity and antimicrobial activity of nano‐cupric oxide. Environmental Science & Technology, 50(7), 3975–3984.

      44 Gleiter, H. (2000). Nanostructured materials: Basic concepts and microstructure. Acta Materialia, 48(1), 1–29.

      45 Goenka, S., Sant, V., & Sant, S. (2014). Graphene‐based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75–88.

      46 Gupta, A., Landis, R. F., & Rotello, V. M. (2016). Nanoparticle‐based antimicrobials: Surface functionality is critical. F1000Research, 5. doi:10.12688/f1000research.7595.1

      47 Gupta, A., Mumtaz, S., Li, C.‐H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic‐resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415–427.

      48  Gurunathan, S., Han, J. W., Kwon, D.‐N., & Kim, J.‐H. (2014). Enhanced antibacterial and anti‐biofilm activities of silver nanoparticles against Gram‐negative and Gram‐positive bacteria. Nanoscale Research Letters, 9(1), 373.

      49 Hadinoto, K., Sundaresan, A., & Cheow, W. S. (2013). Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 427–443.

      50 Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511.

      51 Hayden, S. C., Zhao, G., Saha, K., Phillips, R. L., Li, X., Miranda, O. R., … Bunz, U. H. (2012). Aggregation and interaction of cationic nanoparticles on bacterial surfaces. Journal of the American Chemical Society, 134(16), 6920–6923.

      52 He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13), 3657–3666.

      53 Hochella, M. F., Spencer, M. G., & Jones, K. L. (2015). Nanotechnology: Nature's gift or scientists' brainchild? Environmental Science: Nano, 2(2), 114–119.

      54 Hong, X., Wen, J., Xiong, X., & Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave‐assisted method. Environmental Science and Pollution Research, 23(5), 4489–4497.

      55 Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.

      56 Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., & Fennell, J. A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science & Technology, 32(17), 2650–2653.

      57 Jagadeeshan, S., & Parsanathan, R. (2019). Nano‐metal oxides for antibacterial activity. In M. Naushad, S. Rajendran, & F. Gracia (Eds.), Advanced СКАЧАТЬ