Introduction to Nanoscience and Nanotechnology. Chris Binns
Чтение книги онлайн.

Читать онлайн книгу Introduction to Nanoscience and Nanotechnology - Chris Binns страница 32

Название: Introduction to Nanoscience and Nanotechnology

Автор: Chris Binns

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119172253

isbn:

СКАЧАТЬ material (HDPE). This controllability coupled with the low cost of production has made plastic something of a wonder material that has become ubiquitous in modern society. Currently, around 400 million tons of plastic are produced every year by manufacturers and 75% of this goes into single‐use products.

image

      Source: Reproduced with the permission of the American Chemical Society from [29].

      Other recent innovations in upcycling have been to use waste plastic feedstock to produce carbon nanotubes and graphene [30, 31]. These materials are described in Chapters 3 and 4 and are destined to find applications in a range of emerging nanotechnologies described in those chapters. The processes to extract them from waste are described in Chapter 5, Section 5.1.12. Producing such a high‐value product from waste plastic is a further step toward encouraging recycling.

      This chapter has by far the widest scope in this book and each topic introduced here could easily occupy a book of its own. The treatment, therefore, has necessarily been superficial but a number of references are given for a more in‐depth study of various topics. The aim has been to give a flavor of the importance of nanoparticles in shaping our environment and also in addressing environmental issues. In the next chapter, we will bring our attention back to the research laboratory and discuss the fascinating world of carbon nanoparticles.

      1 1 In a volcanic eruption most of the mass of volcanic ash is distributed in particles with sizes in the range 1 μm–1 mm and the plume reaches a height of up to 20 km. Assuming a prevailing wind with an average speed of 10 ms−1. Use the equation in Advanced Reading Box 2.1 to calculate the maximum distance downwind of the volcano at which 1 mm diameter particles and 50 μm diameter particles are deposited. What size of particle can be expected to be deposited over the entire globe?

      2 2 The table and graph below show the aerosol concentration in mg/m3 as a function of particle diameter measured in a typical urban environment. Assuming the average density of the material in the particles is 2000 kg/m3, convert the data to show the number of particles per cubic meter as a function of particle diameter.Particle diameter (μm)Mass per unit volume (mg/m3)0.011.00E−050.028.00E−040.030.0050.040.0070.050.0080.060.010.070.0110.080.0120.090.0140.10.0160.20.0290.30.0370.40.0470.50.0590.60.0650.70.0680.80.0690.90.06910.06820.0630.0540.06550.07860.08670.09180.09590.098100.1200.091300.072400.055500.04

      3 3 Derive Equation (2.4) in Advanced Reading Box 2.2 by considering the change in the energy of the surface tension of a liquid drop of radius r due to the shrinkage resulting from the evaporation of a single molecule of volume v.

      4 4 Describe how phytoplankton produces an important feedback mechanism that helps to reduce global warming.

      1 1 Schüler, D. (2002). The biomineralisation of magnetosomes in Magnetospirillium gryphiswaldense. International Microbiology5: 209–214. https://doi.org/10.1007/s10123‐002‐0086‐8.

      2 2 Hinds, W.C. (1999). Aerosol Technology. New York: Wiley.

      3 3 Seinfeld, J.J. and Pandis, S.N. (1997). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: Wiley.

      4 4 Champion, J.A., Walker, A., and Mitragotri, S. (2008). Role of particle size in phagocytosis of polymeric microspheres. Pharmaceutical Research 25: 1815–1821.

      5 5 Roberts, J. and Quastel, J.H. (1963). Particle uptake by polymorphonuclear leucocytes and Ehrlich ascites‐carcinoma cells. Biochemical Journal 89: 150–156.

      6 6 Hoet, P.M., Brüske‐Hohlfield, I., and Salata, O.V. (2004). Nanoparticles – known and unknown health risks. Journal of Nanobiotechnology 2: 12. http://www.jnanobiotechnology.com/content/2/1/12.

      7 7 Renwick, L.C., Donaldson, K., and Clouter, A. (2001). Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicology and Applied Pharmacology 172: 119–127.

      8 8 Brook, R.D., Rajagopalan, S., Pope, C.A. 3rd et al. (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121: 2331–2378.

      9 9 Miller, M.R., Raftis, J.B., Langrish, J.P. et al. (2017). Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11: 4542–4552. https://doi.org/10.1021/acsnano.6b0855.

      10 10 Boyles, M.S.P., Stoehr, L.C., Schlinkert, P. et al. (2014). The significance and insignificance of carbon nanotube‐induced inflammation. Fibers 2: 45–74. СКАЧАТЬ