Introduction to Nanoscience and Nanotechnology. Chris Binns
Чтение книги онлайн.

Читать онлайн книгу Introduction to Nanoscience and Nanotechnology - Chris Binns страница 31

Название: Introduction to Nanoscience and Nanotechnology

Автор: Chris Binns

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119172253

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="#ulink_9e32a77d-22b3-5f2b-a50f-1f8b6ad8b38d">Figure 2.15 Pollution of soil and groundwater by anthropogenic activities. Releases by factories, urban run‐off, farming and waste disposal all introduce contaminants into the soil. In addition, sulfur compounds released into the air enter clouds and are re‐deposited as acid rain. The flow of groundwater in the water table aquifer introduces the contaminants into waterways, which become a source of redistribution.

      The nZVI removes contaminants by forming compounds with them and bonding them to the surface of the nanoparticles, which is greatly facilitated by the large surface area presented. This is typically 25 m2/g for commercially available nZVI powders but can reach 100 m2/g (see Problem 1, Chapter 1). The freshly synthesized nZVI particles have a thin porous oxide shell that allows contaminants to get very close to the iron/oxygen interface where the reactions take place. As they work, the nanoparticles get coated by a shell of the reaction products and eventually become inactive. The first demonstration of the method was in 1997 where it was used to remove chlorinated organic toxins [26] but since then it has been shown to clear a range of contaminants from groundwater including antibiotics, dyes, solvents, pesticides, metals, and radioactive isotopes. For a comprehensive list of contaminants removed see [27].

image image

      (2.6)equation

      Magnetic separation of contaminants has only been demonstrated in the laboratory and is much more difficult in field applications. One issue is that it is difficult to apply sufficiently high field gradients over the distance scales required to produce magnetic separation on a workable timescale. In addition, if the particles are carried in a flow, the viscous drag will overcome the magnetic field gradients that can be applied in practice in even slow flows (see Chapter 8, Advanced Reading Box 8.1).

      

      2.7.2 Conversion of Waste Plastics to High‐Grade Materials (Upcycling)

image

      The properties of the solid polymer are highly controllable by changing the chain length, introducing other atoms and branching the polymer chains. This happens naturally to some extent and can be encouraged to form a low‐density light material (LDPE) or discouraged, СКАЧАТЬ