Fragments of Earth Lore: Sketches & Addresses Geological and Geographical. Geikie James
Чтение книги онлайн.

Читать онлайн книгу Fragments of Earth Lore: Sketches & Addresses Geological and Geographical - Geikie James страница 21

Название: Fragments of Earth Lore: Sketches & Addresses Geological and Geographical

Автор: Geikie James

Издательство: Bookwire

Жанр: Языкознание

Серия:

isbn: 4064066138578

isbn:

СКАЧАТЬ of the rock-ridges satisfies one that they have been smoothed off by some agent pressing upon them in a direction that coincides with their own trend; and not only so, but the smoothing agent, it is clearly seen, must have come from the watersheds and then pressed outwards to the low-grounds which are now watered by the Teviot and the Tweed. This is shown by the manner in which the rocks have been smoothed off, for their smooth faces look towards the dominant watersheds, while their rough and unpolished sides point away in the opposite direction. Sometimes, however, we find that more or less steeply projecting rocks face the dominant watersheds. When such is the case, there is usually a long sloping “tail” behind the crag—a “tail” which is composed chiefly of superficial deposits. The hills between Hume and Stichill afford some good examples. The two kinds of appearances are exhibited in the accompanying diagram (Figs. 10, 11.) The appearance shown in Fig. 10 is of most common occurrence in the upland parts of the country, while “crag and tail” (as shown in Fig. 11) is seen to greatest advantage in the open low-grounds. In both cases it will be observed that superficial deposits (t) nestle behind a more or less steep face of rock.

       Fig. 11.—“Crag and Tail”; boss of hard rock, c; intersecting sandstones, s; superficial deposits heaped up in rear of crag, t. The arrow indicates direction followed by smoothing agent.

      When the rocks have not been much exposed to the action of the weather, they often show a polished surface covered with long parallel grooves and striæ or scratches. Such polished and scratched surfaces are best seen when the superficial deposits have been only recently removed. Often, too, when we tear away the thick turf that mantles the hill-slopes, we find the same phenomena. Indeed, wherever the rocks have not been much acted upon by the weather, and thus broken up and decomposed, we may expect to meet with more or less well-marked grooves and stride. Now the remarkable circumstance about these scratches is this—they agree in direction with the trend of the rock-ridges and the hollows described above. Nor can we doubt that the superficial markings have all been produced by one and the same agent. In the upper valleys of the Cheviots, the scratches coincide in direction with the valleys, which is, speaking generally, from south to north, but as we approach the low-grounds they begin to turn more to the east (just, as we have seen, is the case with the ridges and hollows), until we enter England to the east of Coldstream, where the striæ point first nearly due east, but eventually swing round to the south-east, as is well seen upon the limestone rocks between Lowick and Belford. In Teviotdale the general trend of the striæ is from south-west to north-east, a direction which continues to hold good until the lower reaches of the Tweed are approached, when, as we have just mentioned, they begin to turn more and more to the east. Thus it becomes evident that the denuding agent, whatever it was, that gave rise to these ridges and scratched rock-surfaces must have pressed outwards from all the dominant watersheds, and, sweeping down through the great undulating strath that lies between the Cheviots and the Lammermuirs, must have gradually turned away to the east and south as it rounded the northern spurs of the former range, so as to pass south-east over the contiguous maritime districts of Northumberland.

      A few words now as to the character of the superficial deposits which enter so largely into the composition of the long parallel banks and ridges in the low-grounds of Roxburghshire, Berwickshire, and the northern part of Northumberland. The most conspicuous and noteworthy deposit is a hard tough tenacious clay, which is always more or less well-charged with blunted and sub-angular stones and boulders, scattered pell-mell through the mass. This clay is as a rule quite unstratified—it shows no lines of bedding, and although here and there it contains irregular patches and beds of gravel and sand, yet it evidently does not owe its origin to the action of water. Its colour in the upper part of Teviotdale and the Cheviots is generally a drab-brown, or pale grey and sometimes yellow, while here and there, as in the upper reaches of the Jed valley, it is a dark dingy bluish grey. In the lower parts of Teviotdale and in the Tweed district it is generally red or reddish brown. The stones in the clay have all been derived from the rocks of the region in which it occurs. Thus in Teviotdale we find that in the higher reaches of the dale which are Silurian the stones and boulders consist of various kinds of greywacké, etc. In the lower reaches, however, when we pass into the Red Sandstone area, we note that the clay begins to contain fragments of red sandstone, while the clay itself takes on a reddish tinge, until we get down to the vale of the Tweed, where not only is the clay very decidedly red, but its sandstone boulders also are very numerous. The same appearances present themselves in passing outwards from the Cheviots. At first the clay contains only stones that have been derived from the upper parts of the hills, but by-and-by, as we near the low-grounds, other kinds begin to make their appearance, so that by the time we reach the Tweed we may obtain from the clay specimens of every kind of rock that occurs within the drainage-area of the Teviot and the lower reaches of the River Tweed.

      Look at the stones, and you shall observe that all the harder and finer-grained specimens are well-smoothed and covered with striæ or scratches, the best marked of which run parallel with the longer axis of each stone and boulder. These scratches are evidently very similar to those markings that cover the surface of the underlying solid rock, and we may feel sure, therefore, that the denuding agent which smoothed and scratched the solid rocks had also something to do with the stones and boulders of the clay.

      Underneath the stony clay, or Till, as it is called, we find here and there certain old river gravels. We know that these gravels are river-formations, because not only do they lie at the bottom of the river-valleys, but the stones, we can see, have been arranged by water running in one constant direction, and that direction is always down the valley in which the gravels chance to occur. Frequently, however, there is no trace of such underlying gravels, but the till rests directly upon the solid rocks.

      Now what do all these appearances mean? It is clear that there is no natural agent in this country engaged in rounding and scratching the rocks, or in accumulating a stony clay like till. In alpine regions, however, we know that glaciers, as they slowly creep down their valleys, grind and polish and scratch the rocks over which they pass, and that underneath the moving ice one may detect smoothed and striated stones precisely resembling those that occur in till. Frost in such alpine regions splits up the rocks of the cliffs and mountain-slopes that overlook a glacier, and immense masses of angular stones and débris, thus loosened, roll down and accumulate along the flanks of the ice-streams. Eventually such accumulations are borne slowly down the valley upon the back of the glacier, and are dropped at last over the terminal front of the ice, where they become intermingled with the stones and rubbish, which are pushed or washed out from underneath the ice. These heaps and masses of angular débris and stones are called “moraines,” and one can see that in Switzerland the glaciers must at some time have been much larger, for ancient moraines occur far down in the low-grounds of that country—the glaciers being now confined to the uppermost reaches of the deep mountain-valleys. Moreover, we may note how the mountain-slopes overlooking the present puny glaciers have been rubbed by ice up to a height of sometimes a thousand feet and more above the level of the existing ice-streams. Now since the aspect presented by the glaciated rock-surfaces of Switzerland is exactly paralleled by the rounded and smoothed rocks of Scotland, there can be no doubt that the latter have had a similar origin. Again, we find throughout the low-grounds of Switzerland a deposit of till precisely resembling that which is so well developed in Teviotdale and the valley of the Tweed. And as there can be no doubt that the Swiss till has been produced by the action of glacier ice, we are compelled to believe the same of the till in Scotland.

      Let us further note that in the deep mountain-valleys of Switzerland the glacial deposits consist for the most part of coarse morainic débris—of such materials, in short, as the terminal moraines of existing glaciers are mainly composed. Not infrequently this morainic débris has been more or less acted upon by the rivers that escape from the glaciers, and the angular stones have been rounded and arranged in bedded masses. It is only when we get out of the mountain-valleys and approach the low-grounds that the till, or stony clay, begins to appear abundantly. The same phenomena characterise the Cheviot district. In the upper reaches of the mountain-valleys at the heads of the Teviot, the Kale, СКАЧАТЬ