Fragments of Earth Lore: Sketches & Addresses Geological and Geographical. Geikie James
Чтение книги онлайн.

Читать онлайн книгу Fragments of Earth Lore: Sketches & Addresses Geological and Geographical - Geikie James страница 18

Название: Fragments of Earth Lore: Sketches & Addresses Geological and Geographical

Автор: Geikie James

Издательство: Bookwire

Жанр: Языкознание

Серия:

isbn: 4064066138578

isbn:

СКАЧАТЬ accumulated round the shores of the ancient lake. Of course, during all this time fine-grained sediment gathered over the deeper parts of the lake-bottom.

      We have no evidence to show what kind of creatures, if any, inhabited the land at this time; nor do any fossils occur in the red earthy beds to throw light upon the conditions of life that may have obtained in the lake. If glaciers really existed and sent down ice-cold water, the conditions would hardly be favourable to life of any kind; for glacial lakes are generally barren. But the absence of fossils may be due to other causes than this. It is a remarkable fact, that red strata are, as a rule, unfossiliferous, and the few fossils which they do sometimes yield are generally indicative rather of lacustrine and brackish-water, than marine conditions. The paucity or absence of organic remains seems to have been often due to the presence in the water of a superabundance of salts. Now this excessive salinity may have arisen in either of two ways. First, we may suppose some wide reach of the sea to have been cut off from communication with the open ocean by an elevation of a portion of its bed; and in this case we should have a lagoon of saltwater, which evaporation would tend to concentrate to such a degree, that by-and-by nothing would be able to live in its waters. Or, again, we may have a lake so poisoned by the influx of springs and streams, carrying various salts in solution, as to render it uninhabitable by life of any kind, either animal or vegetable. Many red sandstone deposits, as Sir A. C. Ramsay has pointed out, are evidently lagoon-formations, which is proved by the presence of associated beds of rock-salt, gypsum, and magnesian limestone. They have slowly accumulated in great inland seas or lakes having no outlet, whose waters were subject to evaporation and concentration, although now and then they seem to have communicated more or less freely with the ocean. The red earthy beds of the Jed, however, though unfossiliferous, yet contain no trace of rock-salt or magnesian limestone. The only character they have in common with the salt-bearing strata of the New Red Sandstone of England is their colour, due to the presence of peroxide of iron, which we can hardly conceive could have been deposited in the mud of a sea communicating freely with the ocean. But a quiet lake, fed by rivulets and streams that drained an old volcanic district, is precisely the kind of water-basin in which highly ferruginous mud and sand might be expected to accumulate. Such a lake, tainted with the various salts, etc., carried into it by streams and springs (some of which may have been thermal; for, as we shall see presently, the volcanic forces, although quiescent, were yet not extinct), might well be unfitted for either animal or plant, and probably this is one reason why the red earthy beds of the Jed are so unfossiliferous.

      After some time, the physical conditions in the regions under review experienced some further modification. Considerable depression of the land supervened, and the waters of our inland sea or lake rose high on the slopes of the Cheviots. Mark now how the character of the sediment changes. The prevailing red colour has disappeared, and white, yellow, and pale greenish or grey sand begins to be poured over the bed of the lake. Even yet, however, ferruginous matter exists in sufficient quantity to tint the sediment red in some places. With the appearance of these lighter-coloured sandy deposits, the conditions seem to have become better fitted to sustain life. Fish of peculiar forms, which, like the gar-pike of North American lakes, were provided with a strong scaly armour of tough bone, began to abound, weeds grew in the water, and the neighbouring land supported a vegetation now very meagrely represented by the few remains of plants which have been preserved. In some places fish-scales are found in considerable abundance. They belong to several genera and species which are more or less characteristic of the Old Red Sandstone formation. The most remarkable form was the Pterichthys, or wing-finned fish. Its blunt-shaped head and the anterior portion of its body were sheathed in a solid case of bone, formed by the union of numerous bony scales or plates. Two curious curved spine-like arms occupied the place of pectoral fins, and may have been used by the creature in paddling along the bottom of the sea or lake in which it lived. The posterior part of the body was covered with bony scales, but these were not suturally united. Other kinds of fish were the Holoptychius and Coccosteus, both of which were, like the Pterichthys, furnished with bony scales. The scales of the former overlapped, and had a curious wrinkled surface. The head of the Coccosteus was protected by a large bony shield or buckler, and a similar bony armour covered the ventral region.

      The organic remains of these fish-bearing strata are too scanty, however, to enable us to form any idea of the kind of climate which characterised the district at this long-past period; but if we rely upon the fossils which have been met with in strata of the same or approximately the same age elsewhere, we may be pretty sure the climate was genial, and nourished on the land an abundant vegetation, consisting of ferns, great reeds, and club-mosses, which attained the dimensions of large trees, conifers, and other strange trees which have no living analogues.

      It seems most likely that when the land sank down in the Cheviot district, so as to allow the old lake to reach as it were a higher level, some communication with the outlying ocean was effected. Red ferruginous mud would then cease to accumulate, or gather only now and then; the deposits would for the most part be white or yellow, or pale green; and fish would be able to come in from the sea. The communication with the ocean, however, was probably never very free, but liable to frequent interruption.

      Here, then, ends the third great period of time represented by the rocks of the Cheviot district. The first period, as we have seen, closed with the deposition of the Silurian strata. Thereafter supervened a vast lapse of time, not recorded in the Cheviots by the presence of any rocks, but represented in other regions by younger members of the Silurian system. During this unrecorded portion of past time, the Silurian strata of the Cheviots were hardened, compressed, folded, upheaved to the light of day, and worn into hills and valleys by the action of the sub-aërial forces. Then began the second period of rock-forming in our district. Volcanoes poured out successive beds of molten matter and showers of stones and ashes, and so built up the rock-masses of the highest parts of the Cheviot Hills. These eruptions belong to the Old Red Sandstone age, and form a portion of what we term the Lower Old Red Sandstone. After the extinction of the volcanoes, another prolonged period elapsed, which is not accounted for in the Cheviots by the presence of any rocks. Then it was, as we know, that the great volcanic bank was denuded and worn into a system of hills and valleys. Now, since it is evident that the red beds of the Jed and other places are also of Old Red Sandstone age, it follows that they must belong to a higher place in the Old Red Sandstone formation than the much-denuded igneous rocks upon which they rest unconformably. The reasonable conclusion seems to be that the denudation or wearing away of the Lower Old Red Sandstone igneous rocks of the Cheviots was effected during that period which is represented in other districts of Scotland by what is called the Middle Old Red Sandstone, so that the Jed beds will thus rank as Upper Old Red Sandstone.

       Fig. 8.—s, Silurian strata; i, Cheviot Igneous Rocks (Lower Old Red Sandstone); r, Upper Old Red Sandstone series; c, Kelso Igneous Rocks (Lower Carboniferous); d, Lower Carboniferous Sandstones, Shales, etc.

      I come now to speak of certain rocks which, although they are developed chiefly beyond the limits of our district, yet require a little consideration before we can complete our account of the geological history of the Cheviots. The rocks referred to consist chiefly of old lava-beds, which very closely resemble those of the Lower Old Red Sandstone. They appear on the south side of the Tweed valley below Kelso, whence they extend south-west and west, crossing the river at Makerstoun, and sweeping north to form the hills about Smailholm, Stichill, and Hume (Fig. 8). All to the east of these rocks, the valley of the Tweed is occupied by a great thickness of grey sandstones, and grey and blue shales and clays, with which are associated thin cement-stone bands, and occasional coarse sandy limestones called cornstone. These strata rest upon the outskirts of the Kelso igneous rocks, and are clearly of later date than these, since in their lower beds, which are often conglomeratic, we find numerous rounded fragments of the igneous rocks upon which the sandstones and shales abut. The latter have yielded a number of fossils, both animals and plants, to which I shall refer presently. In the bed of the Teviot near Roxburgh, and elsewhere, the Kelso igneous rocks are found reposing upon whitish and reddish sandstones, which are evidently the upper members of СКАЧАТЬ