Wheat Belly. William Davis, MD
Чтение книги онлайн.

Читать онлайн книгу Wheat Belly - William Davis, MD страница 10

Название: Wheat Belly

Автор: William Davis, MD

Издательство: HarperCollins

Жанр: Кулинария

Серия:

isbn: 9780007568147

isbn:

СКАЧАТЬ was simply assumed that, because breeding efforts yielded plants that remained essentially “wheat,” new strains would be perfectly well tolerated by the consuming public. Agricultural scientists, in fact, scoff at the idea that breeding manipulations have the potential to generate strains that are unhealthy for humans. After all, breeding techniques have been used, albeit in cruder form, in crops, animals, even humans for centuries. Mate two varieties of tomatoes, you still get tomatoes, right? Breed a Chihuahua with a Great Dane, you still get a dog. What’s the problem? The question of animal or human safety testing was never raised. With wheat, it was likewise assumed that variations in gluten content and structure, modifications of other enzymes and proteins, qualities that confer susceptibility or resistance to various plant diseases, would all make their way to humans without consequence.

      Judging by research findings of agricultural geneticists, such assumptions are unfounded and just plain wrong. Analyses of proteins expressed by a wheat hybrid compared to its two parent strains have demonstrated that, while approximately 95 percent of the proteins expressed in the offspring are the same, 5 percent are unique, found in neither parent.10 Wheat gluten proteins, in particular, undergo considerable structural change with a method as basic as hybridization. In one hybridization experiment, fourteen new gluten proteins were identified in the offspring that were not present in either parent wheat plant.11 Moreover, when compared to century-old strains of wheat, modern strains of Triticum aestivum express a higher quantity of genes for gluten proteins that are associated with celiac disease.12

      The changes introduced into wheat go even further, involving a process called chemical mutagenesis. BASF, the world’s largest chemical manufacturer, holds the patent on a strain of wheat called Clearfield that is resistant to the herbicide imazamox (Beyond). Clearfield wheat is impervious to imazamox, allowing the farmer to spray it on his field to kill weeds but not the wheat, similar to corn and soy that are genetically modified to be resistant to glyphosate (Roundup). In their marketing, BASF proudly declares that Clearfield is not the product of genetic-modification. So how did they get Clearfield wheat to be herbicide resistant?

      Clearfield wheat was developed by exposing seeds and embryos to sodium azide, a toxic chemical used in industrial settings. If the compound is mixed with water or an acid or comes into contact with metal (for example, as a result of an accident in a laboratory) it can create a potentially deadly toxic gas. The sodium azide was used to induce genetic mutations in wheat seeds and embryos until the desired mutation was obtained. Problem: Dozens of other mutations were also induced, but as long as the wheat plant did its job in yielding satisfactory bagels and biscuits, no further questions were asked and the end product was sold to the public.13 In addition to the process of chemical mutagenesis, there are also gamma ray and high-dose x-ray mutagenesis, all relatively indiscriminate methods to introduce mutations.

      In the semantic game that Big Agribusiness likes to play, these methods do not fall under the umbrella of “genetic modification” even though they yield even more genetic changes than genetic modification. Clearfield wheat is now grown on about a million acres in the Pacific Northwest of the United States.

      Surely the wheat industry deserves an honorary doctorate from the Vladimir Putin College of Obfuscation.

       A GOOD GRAIN GONE BAD?

      Given the genetic distance that has evolved between modern-day wheat and its evolutionary predecessors, is it possible that ancient grains such as emmer and einkorn can be eaten without the unwanted effects that accompany modern wheat products?

      I decided to put ancient wheat to the test, grinding 2 pounds of whole einkorn grain to flour, which I then used to make bread. I also ground modern conventional organic whole wheat flour from seed. I made bread from both the einkorn and conventional flour using only water and yeast with no added sugars or flavorings. The einkorn flour looked much like conventional whole wheat flour, but once water and yeast were added, differences became evident: The light brown dough was less stretchy, less pliable, and stickier than a traditional dough, and it lacked the moldability of conventional wheat flour dough. The dough smelled different, too, more like peanut butter rather than the standard neutral smell of dough. It rose less than modern dough, rising just a little, compared to the doubling in size of modern bread. And, as Eli Rogosa claimed, the final bread product did indeed taste different: heavier, nutty, with an astringent aftertaste. I could envision this loaf of crude einkorn bread on the tables of third century BC Amorites or Mesopotamians.

      I have a wheat sensitivity and become quite ill with any re-exposure. So, in the interest of science, I conducted my own little experiment: four ounces of einkorn bread on day one versus four ounces of modern organic whole wheat bread on day two. I braced myself for the worst, since my reactions have been rather unpleasant.

      Beyond simply observing my physical reaction, I also performed fingerstick blood sugar tests after eating each type of bread. The differences were striking.

      Blood sugar at the start: 84 mg/dl. Blood sugar after consuming einkorn bread: 110 mg/dl. This was more or less the expected response to eating some carbohydrate. Afterward, though, I felt no perceptible effects—no sleepiness, no nausea, no pain, no urge to pound something. In short, I felt fine. Whew!

      The next day, I repeated the procedure, substituting four ounces of conventional organic whole wheat bread. Blood sugar at the start: again 84 mg/dl. Blood sugar after consuming conventional bread: 167 mg/dl. Moreover, I soon became nauseated, nearly losing my lunch. The queasy effect persisted for thirty-six hours, accompanied by stomach cramps that started almost immediately and lasted for many hours. Sleep that night was fitful, filled with vivid, unpleasant dreams. The next morning, I couldn’t think straight, nor could I understand the research papers I was trying to read, having to read and reread paragraphs four or five times; I finally gave up. Only a full day and a half later did I start feeling normal again.

      I survived my little wheat experiment, but I was impressed with the difference in responses to ancient wheat and modern wheat in my whole wheat bread. Surely something odd was going on here.

      My personal experience, of course, does not qualify as a clinical trial. But it raises some questions about the potential differences that span a distance of ten thousand years: ancient wheat that predates the changes introduced by human genetic intervention versus modern wheat. (Please don’t interpret my comments to mean that heirloom or traditional strains of wheat are healthy or benign: They have their own set of problems when unwitting humans consume them, something I shall discuss later.)

      Multiply these alterations by the tens of thousands of hybridizations, mutagenesis, and other manipulations to which wheat has been subjected and you have the potential for dramatic shifts in genetically determined traits such as gluten structure. And note that the genetic modifications inflicted on wheat plants are essentially fatal, since the thousands of new wheat breeds were helpless when left to grow in the wild, relying on human assistance for survival.14

      The new agriculture of increased wheat yield was initially met with skepticism in the Third World, with objections based mostly on the perennial “That’s not how we used to do it” variety. Dr. Borlaug, hero of wheat hybridization, answered critics of high-yield wheat by blaming explosive world population growth, making high-tech agriculture a “necessity.” The marvelously increased yields enjoyed in hunger-plagued India, Pakistan, China, Colombia, and other countries quickly quieted naysayers. Yields improved exponentially, turning shortages into surplus and making wheat products cheap and accessible.

      Can you blame farmers for preferring high-yield semi-dwarf hybrid strains? After all, many small farmers struggle financially. If they can increase yield-per-acre up to tenfold, with a shorter growing season and easier harvest, why wouldn’t they?

       DON’T BE A PEST

      If СКАЧАТЬ