Fat Chance: The bitter truth about sugar. Dr. Lustig Robert
Чтение книги онлайн.

Читать онлайн книгу Fat Chance: The bitter truth about sugar - Dr. Lustig Robert страница 13

Название: Fat Chance: The bitter truth about sugar

Автор: Dr. Lustig Robert

Издательство: HarperCollins

Жанр: Здоровье

Серия:

isbn: 9780007514137

isbn:

СКАЧАТЬ Their hypothalami can’t see their leptin, so their brains think they’re starving, and will therefore try to increase energy storage (gluttony) and conserve energy usage (sloth).

      In 1999, Steven Heymsfield, then at Columbia University, gave daily injections of leptin at varying doses to obese adults for six months. All these people had high leptin levels to start. The degree of weight loss, even with the highest dosage of leptin, was underwhelming.9 Clearly these obese people were leptin resistant. They couldn’t respond to their own leptin, and no amount of extra leptin was going to make a difference. Heymsfield’s study was the end of the promise of leptin as a stand-alone therapy for obesity and the end of Amgen’s interest.

       Hypothalamic Obesity: Behavior or Biochemistry?

      This is where I enter the story. In 1995, I arrived in Memphis to start work at St. Jude Children’s Research Hospital as a pediatric neuroendocrinologist. My training is in taking care of kids with brain tumors, and St. Jude had a large population of survivors, Many of these children develop hormonal deficiencies because of damage to the hypothalamus—due to the tumor itself, the neurosurgery to remove it, or the radiation and chemotherapy they receive to try to kill it. The good news is that we endocrinologists can treat these children by replacing most of the hormones that are missing—we can affect their growth, energy metabolism, and cognitive status; induce puberty when the children are age appropriate; and improve their overall health.

      However, a relatively small number of children like Marie (and adults) who survive their brain tumors become massively obese after their tumor therapy is complete. Their hypothalamus is damaged, and their weight skyrockets. Their appetites aren’t that different from those of other obese children, but their energy expenditure is markedly decreased. (Marie didn’t move.) Those affected sit on the couch, watch TV, eat, poop, sleep, and generally lose interest in the world around them. As one parent stated, “It’s double jeopardy. To think you might lose your kid to a cancer, and survive it, but then to lose your kid to a complication instead.” Patients with this form of obesity, called hypothalamic obesity, can’t lose weight. Even if these kids eat only 500 calories a day, they gain weight.10 The neurons in the hypothalamus, which sense the leptin signal, are all dead. The “servo-mechanism” for energy balance had been short-circuited. This is leptin resistance at its worst—an anatomic leptin resistance. Rodent studies dating back to the early 1950s show that when you damage the VMH, the animal will become massively obese, and not even food restriction will reverse that. The VMH-lesioned rats ate more than they needed and burned less than they should have. Unlike the leptin-deficient mice, no amount of leptin would fix the problem. These animals had anatomic leptin resistance.11 The leptin had no place to act.

      The obese children I saw at St. Jude were similar to these VMH-lesioned rats. There was no fixing them because there was no way to regrow those neurons. Those kids were stuck forever in bodies that just kept storing energy instead of burning it,12 with brains that constantly thought the bodies were starving. They would forever get fatter on fewer calories, never feel good, and would lose interest in everything around them. If this isn’t hell on earth for parent and child, I don’t know what is.

      Worst yet, there was no treatment. Diet and exercise is notoriously ineffective in these children. Weight loss drugs also didn’t work. In 1995, I was faced with a clinic full of patients with hypothalamic obesity following their brain tumor therapy. How to help them? I couldn’t give them leptin, because the block at the hypothalamus would not allow leptin to work. If any therapy were to be successful, it would have to work downstream of the leptin neuron, somewhere between the brain and the fat cell.

       Insulin: The “Leptinator”

      Normally, the amount of insulin released in response to a meal is yoked to the blood sugar rise. But there are a few things that force the pancreas to make extra insulin, the vagus nerve being chief among them. When the brain can’t see the leptin signal, as in children such as Marie, it interprets starvation. The vagus nerve goes into overdrive to store more energy, and kick-starts the pancreas to make extra insulin—even more than the glucose rise would predict. This excess insulin release drives nonstop energy storage and nonstop weight gain.

      As it happens, there is a drug available that can lower insulin secretion as a side-effect. It is called octreotide (Sandostatin, made by Novartis Pharmaceuticals) and is what we used to treat Marie. It is normally used to reduce pituitary growth hormone secretion in patients who have tumors of the pituitary gland, a disease called acromegaly. But it also happens to reduce pancreatic insulin secretion. It doesn’t wipe it out completely—that would cause diabetes—but it does reduce the rapid early release of insulin in response to a meal or a glucose tolerance test. But it’s expensive, requires injections, has side-effects, and with regard to obesity, it is for experimental studies only.

      We have treated many children with hypothalamic obesity with octreotide.13 When we were successful in reducing their insulin release, the patients lost weight and started to feel better. Parents were calling me up within the first few weeks, saying, “I’ve got my kid back!” Most amazingly, the children had started to be active. When we got the insulin down, Marie and patients like her improved physically, mentally, and socially.

      These studies highlight a crucial concept of obesity. Each of us is really two compartments: lean body mass (heart, liver, kidneys, brain, and muscles), which burns energy; and fat, which stores energy. Every molecule of energy consumed has a choice: to which compartment does the energy go? Is the energy burned or stored? Your consumption of energy is never high enough to overwhelm both compartments at the same time; no one can eat that much. This means that there is an issue of energy flux to the two compartments. What factor determines which compartment gets the energy?

      Your insulin does. The more insulin there is, the more energy goes to fat. Normally your fat makes more leptin, which would feedback on your hypothalamus and decrease your insulin by reducing appetite and limiting your energy intake. In this way, the “servo-mechanism” between leptin, the brain, your pancreas, your insulin, and your fat cells maintains normal energy balance. But…if your hypothalamus can’t see your leptin (in this case, because those neurons are dead from a brain tumor), then your brain thinks it’s starving. It will reduce your activity to conserve energy, and increase your appetite to store more energy. When leptin doesn’t work, the biochemistry comes first and the behaviors of gluttony and sloth are secondary.

      This is all well and good for Marie and the few unfortunate souls with hypothalamic obesity. They have a brain tumor. They have a legitimate excuse for being fat, and at least there is now a rational, if painful and expensive, approach to treatment. For them, the biochemistry dictates the behavior. However, the overwhelming majority of obese people do not have a goombah sitting in the middle of their heads wreaking havoc on their energy balance pathway. What does this phenomenon have to do with the obesity pandemic? As you will see, everything.

      Back in 1998, after three years of my working at St. Jude, the response of these patients was quite a revelation. My colleagues at the University of Tennessee and I wondered, “Is it possible that an adult population without brain tumors might manifest the same problem? Did they also have increased vagal tone driving excess insulin secretion and causing their obesity? If we gave them octreotide to suppress their insulin, might they lose weight, feel better, and start exercising?” We didn’t know what these patients looked like. So we did a pilot study in forty-four morbidly obese adults recruited from off the street. We treated all of them with octreotide for six months, courtesy of Novartis Pharmaceuticals. No dieting, no exercise, just the drug. We told them, “If the drug works, it will work by itself.”

      We’ve done this experiment twice, first as a pilot and then as a placebo-controlled trial. The majority of patients did not respond to the drug. But in about 20 percent of the adults, there was big-time weight loss. The thing that predicted their СКАЧАТЬ