CISSP (ISC)2 Certified Information Systems Security Professional Official Study Guide. Gibson Darril
Чтение книги онлайн.

Читать онлайн книгу CISSP (ISC)2 Certified Information Systems Security Professional Official Study Guide - Gibson Darril страница 30

СКАЧАТЬ of each countermeasure for each threat for each asset. Select the most appropriate response to each threat.

Figure 2.5 The six major elements of quantitative risk analysis

      The cost functions associated with quantitative risk analysis include the exposure factor, single loss expectancy, annualized rate of occurrence, and annualized loss expectancy:

      Exposure Factor The exposure factor (EF) represents the percentage of loss that an organization would experience if a specific asset were violated by a realized risk. The EF can also be called the loss potential. In most cases, a realized risk does not result in the total loss of an asset. The EF simply indicates the expected overall asset value loss because of a single realized risk. The EF is usually small for assets that are easily replaceable, such as hardware. It can be very large for assets that are irreplaceable or proprietary, such as product designs or a database of customers. The EF is expressed as a percentage.

      Single Loss Expectancy The EF is needed to calculate the SLE. The single loss expectancy (SLE) is the cost associated with a single realized risk against a specific asset. It indicates the exact amount of loss an organization would experience if an asset were harmed by a specific threat occurring.

      The SLE is calculated using the following formula:

      SLE = asset value (AV) * exposure factor (EF)

      or more simply:

      SLE = AV * EF

      The SLE is expressed in a dollar value. For example, if an asset is valued at $200,000 and it has an EF of 45 percent for a specific threat, then the SLE of the threat for that asset is $90,000.

      Annualized Rate of Occurrence The annualized rate of occurrence (ARO) is the expected frequency with which a specific threat or risk will occur (that is, become realized) within a single year. The ARO can range from a value of 0.0 (zero), indicating that the threat or risk will never be realized, to a very large number, indicating that the threat or risk occurs often. Calculating the ARO can be complicated. It can be derived from historical records, statistical analysis, or guesswork. ARO calculation is also known as probability determination. The ARO for some threats or risks is calculated by multiplying the likelihood of a single occurrence by the number of users who could initiate the threat. For example, the ARO of an earthquake in Tulsa may be .00001, whereas the ARO of an email virus in an office in Tulsa may be 10,000,000.

      Annualized Loss Expectancy The annualized loss expectancy (ALE) is the possible yearly cost of all instances of a specific realized threat against a specific asset.

      The ALE is calculated using the following formula:

      ALE = single loss expectancy (SLE) * annualized rate of occurrence (ARO)

      Or more simply:

      ALE = SLE * ARO

      For example, if the SLE of an asset is $90,000 and the ARO for a specific threat (such as total power loss) is .5, then the ALE is $45,000. On the other hand, if the ARO for a specific threat (such as compromised user account) were 15, then the ALE would be $1,350,000.

      The task of calculating EF, SLE, ARO, and ALE for every asset and every threat/risk is a daunting one. Fortunately, quantitative risk assessment software tools can simplify and automate much of this process. These tools produce an asset inventory with valuations and then, using predefined AROs along with some customizing options (that is, industry, geography, IT components, and so on), produce risk analysis reports. The following calculations are often involved:

      Calculating Annualized Loss Expectancy with a Safeguard In addition to determining the annual cost of the safeguard, you must calculate the ALE for the asset if the safeguard is implemented. This requires a new EF and ARO specific to the safeguard. In most cases, the EF to an asset remains the same even with an applied safeguard. (Recall that the EF is the amount of loss incurred if the risk becomes realized.) In other words, if the safeguard fails, how much damage does the asset receive? Think about it this way: If you have on body armor but the body armor fails to prevent a bullet from piercing your heart, you are still experiencing the same damage that would have occurred without the body armor. Thus, if the safeguard fails, the loss on the asset is usually the same as when there is no safeguard. However, some safeguards do reduce the resultant damage even when they fail to fully stop an attack. For example, though a fire might still occur and the facility may be damaged by the fire and the water from the sprinklers, the total damage is likely to be less than having the entire building burn down.

      Even if the EF remains the same, a safeguard changes the ARO. In fact, the whole point of a safeguard is to reduce the ARO. In other words, a safeguard should reduce the number of times an attack is successful in causing damage to an asset. The best of all possible safeguards would reduce the ARO to zero. Although there are some perfect safeguards, most are not. Thus, many safeguards have an applied ARO that is smaller (you hope much smaller) than the nonsafeguarded ARO, but it is not often zero. With the new ARO (and possible new EF), a new ALE with the application of a safeguard is computed.

      With the pre-safeguard ALE and the post-safeguard ALE calculated, there is yet one more value needed to perform a cost/benefit analysis. This additional value is the annual cost of the safeguard.

      Calculating Safeguard Costs For each specific risk, you must evaluate one or more safeguards, or countermeasures, on a cost/benefit basis. To perform this evaluation, you must first compile a list of safeguards for each threat. Then you assign each safeguard a deployment value. In fact, you must measure the deployment value or the cost of the safeguard against the value of the protected asset. The value of the protected asset therefore determines the maximum expenditures for protection mechanisms. Security should be cost effective, and thus it is not prudent to spend more (in terms of cash or resources) protecting an asset than its value to the organization. If the cost of the countermeasure is greater than the value of the asset (that is, the cost of the risk), then you should accept the risk.

      Numerous factors are involved in calculating the value of a countermeasure:

      ■ Cost of purchase, development, and licensing

      ■ Cost of implementation and customization

      ■ Cost of annual operation, maintenance, administration, and so on

      ■ Cost of annual repairs and upgrades

      ■ Productivity improvement or loss

      ■ Changes to environment

      ■ Cost of testing and evaluation

      Once you know the potential cost of a safeguard, it is then possible to evaluate the benefit of that safeguard if applied to an infrastructure. As mentioned earlier, the annual costs of safeguards should not exceed the expected annual cost of asset loss.

      Calculating Safeguard Cost/Benefit One of the final computations in this process is the cost/benefit calculation to determine whether a safeguard actually improves security without costing too much. To make the determination of whether the safeguard is financially equitable, use the following formula:

      ALE before safeguard – ALE after implementing the safeguard – annual cost of safeguard (ACS) = value of the safeguard to the company

      If the result is negative, the safeguard is not a financially responsible choice. If the result is positive, СКАЧАТЬ