Как не ошибаться. Сила математического мышления. Джордан Элленберг
Чтение книги онлайн.

Читать онлайн книгу Как не ошибаться. Сила математического мышления - Джордан Элленберг страница 19

СКАЧАТЬ сумма с правой стороны уравнения – это именно то, что вы получите, если возьмете исходную сумму, равную Т, и удалите из нее первую 1, то есть вычтете 1 из этой суммы. Другими словами:

      −T = −1 + 1 − 1 + 1 − … = T − 1.

      Таким образом, −T = T – 1 – уравнение с участием Т, которое выполняется только в случае, если Т равно 1/2. Может ли сумма бесконечно большого количества целых чисел каким-то волшебным образом превратиться в дробное число? Тот, кто говорит «нет» в ответ на этот вопрос, действительно имеет право как минимум с некоторым недоверием относиться к сомнительным аргументам подобного рода. Но обратите внимание на то, что некоторые люди дают утвердительный ответ на этот вопрос, в том числе итальянский математик и священник Гвидо Гранди, именем которого обычно называют ряд 1 − 1 + 1 − 1 + 1 − 1 + …. В работе, опубликованной в 1703 году, Гранди привел доводы в пользу того, что сумма данного ряда равна 1/2, а также заявил, что этот удивительный вывод символизирует сотворение Вселенной из ничего. (Не беспокойтесь, я тоже не понимаю последний пункт.) Другие выдающиеся математики того времени, такие как Лейбниц и Эйлер, были согласны со странными расчетами Гранди и даже с его интерпретацией{25}.

      Но на самом деле решение загадки с числом 0,999… (а также парадокса Зенона и ряда Гранди) кроется несколько глубже. Вы совсем не должны поддаваться давлению моих алгебраических доводов. Например, вы можете настаивать на том, что 0,999… равно не 1, а скорее 1 минус некое крохотное бесконечно малое число. Если уж на то пошло, вы можете настаивать и на том, что число 0,333… не равно в точности 1/3, а также отличается от этого числа на некую бесконечно малую величину. Для того чтобы довести данную мысль до конца, потребуется определенное упорство, но это можно сделать. Когда-то у меня был студент по имени Брайан, который изучал математический анализ. Не удовлетворившись теми определениями, которые давались на занятиях, Брайан сам разработал довольно большой фрагмент этой теории, назвав бесконечно малые величины числами Брайана.

      На самом деле Брайан не был первым, кто решил заняться этим. Существует целая область математики под названием «нестандартный анализ», которая специализируется на изучении чисел такого рода. Теория, сформулированая Абрахамом Робинсоном в середине ХХ столетия, наконец позволила понять смысл «бесконечно малых приращений», которые Беркли считал такими нелепыми. Цена, которую придется за это заплатить (или, если посмотреть на это с другой стороны, награда, которую вы за это получите), – обилие новых типов чисел, причем не только бесконечно малых, но и бесконечно больших – огромное множество чисел всех форм и размеров[46].

      Так случилось, что Брайану повезло – у меня в Принстонском университете был коллега Эдвард Нельсон, крупный специалист в области нестандартного анализа. Я устроил им встречу, с тем чтобы Брайан мог больше узнать об этой области. Впоследствии Эд рассказывал мне, что та встреча прошла не очень хорошо. Как только Эд дал понять, что на самом деле бесконечно малые величины никто не будет называть числами Брайана, Брайан полностью потерял интерес к этой области математики.

СКАЧАТЬ



<p>25</p>

Информация о Гранди и его ряде взята в основном из работы: Morris Kline. Euler and Infinite Series // Mathematics Magazine, 1983, Nov., vol. 56, no. 5, p. 307–314.

<p>46</p>

Сюрреальные числа, которые описал Джон Конвей, – это особенно очаровательный и причудливый пример, о чем говорит само название. Этот класс чисел, глубинные аспекты которого еще не изучены, представляет собой удивительный гибрид чисел и стратегических игр. Полезную информацию об этих экзотических числах, а также многих математических методах ведения игр можно найти в труде Элвина Берлекэмпа, Джона Хортона Конвея и Ричарда Гая Winning Ways… («Выигрышные стратегии в математических играх»), см.: Elwyn R. Berlekamp, John H. Conway, Richard K. Guy. Winning Ways for Your Mathematical Plays. Natik MA: A K Peters/CRC Press. 2 ed. Vol. 1–4. 2001–2004.