Риски цифровизации: виды, характеристика, уголовно-правовая оценка. Коллектив авторов
Чтение книги онлайн.

Читать онлайн книгу Риски цифровизации: виды, характеристика, уголовно-правовая оценка - Коллектив авторов страница 4

СКАЧАТЬ style="font-size:15px;">      – стимулирование спроса за счет формирования дополнительных предложений, проведения эффективных маркетинговых акций, продвигающих среди аудитории дополнительные товары.

      Задача фильтрации выбросов – обнаружение в обучающей выборке небольшого числа нетипичных объектов. К задаче сводятся проблемы

      – обнаружение мошенничества, т. е. выявление аномальных финансовых показателей по выручке или объему продаж, что помогает обнаружить факт кражи денежных средств или передачу информации конкурентам;

      – обеспечение информационной безопасности. В частности, аномальное время работы сотрудника или его нетипичные действия дают возможность установить факт инсайдерской деятельности либо идентифицировать несанкционированный доступ к информационной системе;

      – выявление ошибок при экономических расчетах, т. е. фильтрация выбросов привлекает внимание к ошибочно введенной в ручном режиме информации за счет определения ее нетипичности или отсутствия смысла.

      Задача сокращения размерности заключается в том, чтобы при помощи некоторых функций преобразования перейти к наименьшему числу признаков объекта, не потеряв при этом никакой существенной информации. Решение задачи дает возможность оптимизации:

      – производственных процессов – благодаря выявлению действий, не влияющих на эффективность;

      – расходов на содержание сложных систем;

      – использования вычислительных ресурсов.

      Задача заполнения пропущенных значений – замена недостающих значений в матрице «объекты-признаки» их прогнозными значениями. Метод замены используется в социальных исследованиях, когда данные собираются не в полном объеме; для восстановления данных при сбоях или преднамеренном уничтожении; при прогнозировании удовлетворенности от продукта на основе данных по другим продуктам и другим потребителям.

      Кроме обучения с учителем и без учителя, в машинном обучении применяются и другие методы:

      Обучение с подкреплением – процесс, при котором происходит обучение модели, не имеющей сведений о системе, но обладающей возможностью производить действия в ней. Действия переводят систему в новое состояние, и модель получает от системы некоторое вознаграждение. Подобное обучение используется:

      – в управлении роботами при выполнении таких задач, как манипулирование предметами, навигация в загруженном пространстве, поиск устойчивого положения предмета;

      – в управлении технологическими процессами;

      – при персонализации показов рекламы в интернете;

      – в управлении ценами и ассортиментом в сетях продаж;

      – при маршрутизации в телекоммуникационных сетях.

      Частичное обучение занимает промежуточное положение между обучением с учителем и без учителя. Пример прикладной задачи – автоматическая рубрикация большого количества текстов при СКАЧАТЬ