Название: Un curso de álgebra
Автор: Gabriel Navarro Ortega
Издательство: Bookwire
Жанр: Математика
Серия: Educació. Sèrie Materials
isbn: 9788491340294
isbn:
Teorema 1.14 (Euclides) Sean n, m ∈ ℤ no cero.
(a) n y m son coprimos si y solo si existen u, v ∈ ℤ tales que un + vm = 1.
(b) Supongamos que n y m son coprimos. Si z ∈ ℤ, entonces n divide mz si y solo si n divide a z.
(c) Si p es primo, entonces p divide a nm si y solo si p divide a n o a m. En particular, si p divide a un producto de enteros n1 … nk, entonces p divide a algún ni.
Demostración. Si n y m son coprimos, ya sabemos que existen u, v ∈ ℤ tales que un + vm = 1, por el teorema 1.13 (a). Recíprocamente, si un + vm = 1, y d divide a n y a m, por el ejercicio 1.1, d divide a un + vm = 1, y esto completa el apartado (a).
En (b), supongamos que n divide a mz. Sabemos que 1 = un + vm para ciertos u, v ∈ ℤ, y que existe x ∈ ℤ tal que nx = mz. Ahora,
z = unz + vmz = unz + vnx = (uz + vx)n,
y deducimos que n divide a z. La otra implicación es obvia.
Para probar el apartado (c), si suponemos que p divide a nm y que p no divide a n, tenemos que mcd(p, n) = 1, y aplicamos el apartado (b). La segunda parte del apartado (c) se prueba fácilmente por inducción sobre k.
Teorema 1.15 (teorema fundamental de la aritmética) Si n > 1 es un entero, entonces n se escribe de forma única como
donde p1 < … < pk son primos, y a1, …, ak son números naturales no cero.
Demostración. Primero probamos la unicidad. Si
Para probar que cada n > 1 se escribe como producto de primos utilizamos inducción. Si n es primo, ya está. En caso, contrario, n = ab con a, b < n. Por inducción, a y b son producto de primos, y por tanto también lo es n.
El conjunto de números racionales es
Suponemos que el lector está familiarizado con la suma y la multiplicación de números racionales, y sus propiedades más elementales. Por ejemplo,
Es sencillo construir el conjunto de los números racionales a partir de los números enteros como clases de equivalencia. (En el problema 1.10, explicamos cómo hacer esta construcción).
En la segunda parte de este libro, cuando desarrollemos la teoría de Galois, trabajaremos con el conjunto de números reales ℝ y el de los complejos ℂ. La construcción rigurosa de ℝ es uno de los hitos de la matemática del siglo XIX, pero esta es materia de nuestros colegas los analistas. Apenas utilizaremos propiedades de los números reales, más que aquellas que están directamente asociadas a su suma, multiplicación (ℝ es un cuerpo) y a los polinomios. Por ejemplo, dado 0 ≤ a ∈ ℝ y 0 < n ∈ ℕ supondremos que existe un único número real 0 ≤ b ∈ ℝ tal que bn = a. Este número b se escribe
Recordamos que un entero n ∈ ℕ es un cuadrado si n = a2 para cierto a ∈ N.
Teorema 1.16 Sean n, m ∈ ℕ no cero con mcd(n, m) = 1. Entonces
Demostración. Suponemos que
donde a, b ∈ ℕ. Entonces
b2n = a2m.
Como n y m son coprimos, sabemos que p no divide a m. Por tanto, si pe es la mayor potencia de p que divide a b, tenemos que
Como decimos, en la segunda parte del libro estaremos interesados en polinomios y en sus ráıces. Por ejemplo, ¿cuáles son los ceros del polinomio x8 − 1? Para contestar, necesitamos trabajar con números complejos y una cierta trigonometría.
El cuerpo de los nú meros complejos ℂ se define formalmente como el conjunto ℝ2 = {(a, СКАЧАТЬ