Название: Un curso de álgebra
Автор: Gabriel Navarro Ortega
Издательство: Bookwire
Жанр: Математика
Серия: Educació. Sèrie Materials
isbn: 9788491340294
isbn:
Finalmente, una aplicación f : A → B es biyectiva si f es inyectiva y suprayectiva. Las aplicaciones biyectivas (o biyecciones) son las mejores aplicaciones que podemos encontrar entre dos conjuntos.
Ejemplo 1.1 La función f : ℕ → ℕ dada por f(n) = 2n + 1 es inyectiva, pues si f(n) = f(m), entonces 2n + 1 = 2m + 1, y concluimos que n = m. Sin embargo, f no es suprayectiva, pues no podemos hallar ningún n ∈ ℕ tal que f(n) = 2. La función g : {1, 2, 3} → {a, b} dada por g(1) = a, g(2) = b y g(3) = a no es inyectiva, pues g(1) = g(3). Sin embargo, g es suprayectiva.
Sean ahora f : ℝ → ℝ y g : ℝ → ℝ definidas por f(x) = sen(x) y g(x) = x2. Observamos primero que g no es inyectiva pues g(−1) = g(1). Sin embargo, si definimos h : ℝ+ → ℝ con h(x) = x2, donde ℝ+ = {x ∈ ℝ | x ≥ 0}, entonces h es ahora inyectiva (pero no suprayectiva pues −1 no está en la imagen de h). Finalmente, si definimos t : ℝ+ → ℝ+ con t(x) = x2, entonces t es biyectiva. Algo semejante ocurre con f(x) = sen(x). La función s : [−π/2, π/2] → [−1, 1] dada por s(x) = sen(x) puede comprobarse que es una biyección.
¿Por qué es tan importante tener aplicaciones biyectivas? Esencialmente por dos razones. La primera es que una función biyectiva posee una función inversa. En el ejemplo anterior, la inversa de s es la función arcsen : [−1, 1] → [−π/2, π/2], mientras que la inversa de t es la función ráız cuadrada. La segunda razón es que si existe una función biyectiva entre A y B cualquier propiedad que satisfaga A desde el punto de vista de la teoría de conjuntos la va a satisfacer B, y recíprocamente. Es decir, que desde la perspectiva de conjuntos, A y B son equivalentes. Esto nos permitirá después, por ejemplo, comparar conjuntos y sus tamaños.
Si f : A → B y g : B → C, podemos crear una nueva función
g ∘ f : A → C
definida por
(g ∘ f)(a) = g(f(a))
que se llama la composición de g y f.
Por ejemplo, si f : ℝ → ℝ es la función f(x) = x2 + 1 y g(x) = sen(x), entonces (g ∘ f)(x) = sen(x2 + 1) y (f ∘ g)(x) = sen(x)2 + 1.
La primera parte del siguiente ejercicio nos dice que la composición de aplicaciones es asociativa.
Ejercicio 1.4 (i) Si f : A → B, g : B → C y h : C → D son aplicaciones, probar que
(h ∘ g) ∘ f = h ∘ (g ∘ f).
(ii) Si f : A → B es un aplicación, probar que f ∘ 1A = f y 1B ∘ f = f.
Lema 1.3 Sean f : A → B y g : B → C aplicaciones.
(a) Si f y g son inyectivas, entonces g ∘ f es inyectiva.
(b) Si f y g son suprayectivas, entonces g ∘ f es suprayectiva.
(c) Si g ∘ f es inyectiva, entonces f es inyectiva.
(d) Si g ∘ f es suprayectiva, entonces g es suprayectiva.
Demostración. (a) Si g(f(a1)) = g(f(a2)), deducimos que f(a1) = f(a2) por ser g inyectiva. Por ser f inyectiva, tenemos que a1 = a2.
(b) Si c ∈ C, entonces existe b ∈ B tal que g(b) = c, por ser g suprayectiva. Por ser f suprayectiva, existe a ∈ A tal que f(a) = b. Entonces g(f(a)) = c.
(c) Si f(a1) = f(a2), entonces g(f(a1)) = g(f(a2)). Como g ∘ f es inyectiva, deducimos que a1 = a2.
(d) Si c ∈ C, por hipótesis existe a ∈ A tal que g(f(a)) = c. Si b = f(a), deducimos que g(b) = c
Decimos que una función f: A → B es invertible si existe g: B → A tal que f ∘ g = 1B y g ∘ f = 1A. Observamos que la función g, si existe, es única. Efectivamente, si h: B → A también satisface h ∘ f = 1A, entonces
h = h ∘ 1B = h ∘ (f ∘ g) = (h ∘ f) ∘ g = 1A ∘ g = g.
La función g se llama la función inversa de f y se escribe g = f−1. Observamos que en este caso f−1 es también invertible y que (f−1)−1 = f.
Teorema 1.4 Sea f : A → B. Entonces f es invertible si y solo si f es biyectiva.
Demostración. Supongamos que f es biyectiva. Construimos g : B → A de la siguiente manera. Dado b, sabemos que existe a ∈ A tal que f(a) = b, pues f es suprayectiva. Como f es inyectiva, a es único, y por tanto b unívocamente determina a. Definimos g(b) = a. Es inmediato que f ∘ g = 1B y g ∘ f = 1A. Recíprocamente, supongamos que f es invertible y sea f−1 : B → A su inversa. Como f ∘ f −1 = 1B y f −1 ∘ f = 1A son biyectivas, el teorema se sigue por el lema 1.3 partes (c) y (d).