Название: The Official (ISC)2 CISSP CBK Reference
Автор: Aaron Kraus
Издательство: John Wiley & Sons Limited
Жанр: Зарубежная компьютерная литература
isbn: 9781119790006
isbn:
Risk Evaluation
During risk evaluation, you compare the results of your risk analysis to your organization's established risk profile or risk tolerance (i.e., how much risk your organization is willing to take on). In doing so, you are able to determine the best course of action for each of your identified risks. We cover the various options for risk response in the following section.
Risk Response/Treatment
Once you identify and assess your organization's threats, vulnerabilities, and risks, you must determine the best way to address each risk; this is known as risk treatment (or risk response). There are four main categories of risk treatment, as we describe in the following sections: avoid, mitigate, transfer, and accept. Each of these are ultimately leadership/management decisions that should have CISSP input and awareness.
Avoid
Risk avoidance involves eliminating an identified risk by stopping or removing the activity or technology that causes the risk in the first place. Organizations use risk avoidance when a particular risk exceeds their acceptable risk tolerance, but complete avoidance is often difficult to achieve without business disruption. While this type of risk treatment can often mean simply not doing something, policies that ban the use of removable media or personal cloud storage services are avoidance steps that require upfront investment and action.
Mitigate
Risk mitigation (sometimes called risk reduction or risk modification) is a strategy that involves reducing the likelihood of a threat being realized or lessening the impact that the realized threat would have on the organization. Risk mitigation is the most common treatment option for identified risks and involves implementing policies and technologies to reduce the harm that a risk might cause. Moving from single-factor to mutifactor authentication is an example of a mitigation treatment for sensitive data access.
Transfer
Risk transference (also known as risk assignment) involves shifting the responsibility and potential loss associated with a risk onto a third party. Insurance is the most common form of risk transference. For example, if a company loses customer data due to a cyber breach, the company may rely on their cyber insurance to cover any monetary losses associated with the breach. In this case, the breached organization has transferred financial risk to their cyber insurer, but the company still must manage through some level of reputational risk. It's hard to completely transfer all risk, so many people instead use the term risk sharing. Using cloud-based services or managed security services is a great example, because risk is split between you, as the customer, and the third-party provider.
Accept
Risk acceptance unsurprisingly involves accepting the risk associated with a particular threat. Risk acceptance is the way to go if avoiding, mitigating, or transferring the risk would cost more than the expected losses of the realized threat. In theory, a risk should be accepted only if it is completely within an organization's risk tolerance. In practice, organizations are often forced to accept potentially painful risks associated with normal business operations.
Countermeasure Selection and Implementation
Mitigation is the most common risk treatment method of the four treatment approaches in the previous section. Risk mitigation involves the selection and implementation of one or more countermeasures (or “security controls”) with the goal of reducing the likelihood of an adverse event or the impact of that event occurring. Countermeasures generally fall into three categories:
Personnel-related: As people are commonly considered to be an organization's “weakest link,” these countermeasures often prove invaluable. Hiring (or firing), organization restructuring, and awareness training are some common personnel-related countermeasures. Despite our potential as weaknesses, people in high-performing organizations with strong security awareness programs can often prove to be the greatest security asset.
Process-related: Policy, procedure, and other “workflow-based” mitigations generally fall into this category. As an example, consider the implementation of separation of duties on invoice approval and payment as a process-related mitigation against cyber fraud.
Technology-related: This is the category that typically gets the most attention. Encryption, modifying configuration settings, and other hardware or software changes are common examples of technology-related countermeasures.
When selecting countermeasures, you must consider factors such as security-effectiveness, cost-effectiveness, and operational impact.
Security-Effectiveness
Measuring the security-effectiveness of a security control is an essential step in the selection and implementation process. When selecting your countermeasures, you want to be certain that the specific policy, technology, or operational control that you select is able to directly address a risk identified during your risk analysis process. To do this, one must consider what kind of security risks one wants to prevent, detect, or correct, and then identify countermeasures that specifically target those risks. For example, many security teams choose to throw encryption at everything, but if you are concerned with risks that encryption cannot fix (like availability risks), you are better off using those resources for other countermeasures (such as backups).
Cost-Effectiveness
Perhaps even more important than security-effectiveness (believe it or not), cost-effectiveness is a primary consideration for security teams and the management teams that oversee them. Cost-effectiveness can be calculated by performing a cost-benefit analysis that compares the cost of a countermeasure (or multiple countermeasures) to the costs that would be realized by a compromise of the risks that the countermeasures are intended to mitigate.
A countermeasure can be considered cost-effective if the annual loss expectancy (ALE) with the countermeasure plus the cost of countermeasure is less than ALE without the countermeasure. For example, if the ALE associated with theft of sensitive data is $500,000, you can theoretically spend up to $499,999.99 on countermeasures to reduce the ALE of such data theft to $0.01. Of course, you'd want to gain more than a single penny from all your troubles, but this demonstrates the point. Another way to look at it is if the ALE due to ransomware attacks on your company is projected at $200,000 and you spend $50,000 on a sophisticated backup system, the selected countermeasure has a value of $150,000 to your organization, which is quite clearly cost-effective.
NOTE Countermeasures generally have an initial acquisition and implementation cost, followed by recurring (e.g., annual) operating and maintenance costs. You should consider both sets of costs when determining whether a countermeasure makes financial sense for your organization.
Operational Impact
Beyond cost-effectiveness and pure security-effectiveness, you must be sure to evaluate the potential operational impact that a countermeasure may have on your organization. If a countermeasure is too difficult to implement or use, it may have a counterintuitive effect and actually increase risk because it is not being used properly (or at all). For example, some organizations require the use of third-party СКАЧАТЬ