Название: Biofuel Cells
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119725053
isbn:
10. Galindo-de-la-Rosa, J., Arjona, N., Moreno-Zuria, A., Ortiz-Ortega, E., et al., Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids. Biosens. Bioelectron., 92, 117–124, 2017.
11. Quah, T., Abdellaoui, S., Milton, R.D., Hickey, D.P., Minteer, S.D., Cholesterol as a Promising Alternative Energy Source: Bioelectrocatalytic Oxidation Using NAD-Dependent Cholesterol Dehydrogenase in Human Serum. J. Electrochem. Soc., 164, H3024–H3029, 2017.
12. Escalona-Villalpando, R.A., Reid, R.C., Milton, R.D., Arriaga, L. G., et al., Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. J. Power Sources, 342, 546–552, 2017.
13. Ramanavicius, A., Kausaite-Minkstimiene, A., Morkvenaite-Vilkonciene, I., Genys, P., et al., Biofuel cell based on glucose oxidase from Penicillium funiculosum 46.1 and horseradish peroxidase. Chem. Eng. J., 264, 165–173, 2015.
14. Singh, R.S., Singh, T., Pandey, A., Chapter 1—Microbial Enzymes—An Overview, in: Adv. Enzyme Technol., Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C. (Eds.), pp. 1–40, Elsiever, 2019.
15. Petrović, D., Frank, D., Kamerlin, S.C.L., Hoffmann, K., Strodel, B., Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase. ACS Catal., 7, 6188–6197, 2017.
16. Ryabov, A.D., Transition metal chemistry of glucose oxidase, horseradish peroxidase, and related enzymes, in: Including Bioinorganic Studies, van Eldik, R. (Ed.), pp. 201–269, Academic Press, 2004.
17. Leskovac, V., Trivic, S., Wohlfahrt, G., Kandrac, J., Pericin, D., Glucose oxidase from Aspergillus niger: The mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int. J. Biochem. Cell Biol., 37, 731–750, 2005.
18. Hecht, H.J., Kalisz, H.M., Hendle, J., Schmid, R.D., Schomburg, D., Crystalstructure of glucose-oxidase from Aspergillus-niger refined at 2.3 Angstrom resolution. J. Mol. Biol., 229, 153–172, 1993.
19. Tarasevich, M.R., Bioelectrocatalysis, in: Comprehensive Treatise of Electrochemistry: Volume 10 Bioelectrochemistry, Srinivasan, S., Chizmadzhev, Y.A., Bockris, J.O.M., Conway, B.E., Yeager, E. (Eds.), pp. 231–295, Springer US, Boston, MA, 1985.
20. Mehra, R., Muschiol, J., Meyer, A.S., Kepp, K.P., A structural–chemical explanation of fungal laccase activity. Sci. Reports, 8, 17285, 2018.
21. Barton, S.C., Gallaway, J., Atanassov, P., Enzymatic biofuel cells for Implantable and microscale devices. Chem. Rev., 104, 4867–4886, 2004.
22. Mot, A.C., Silaghi-Dumitrescu, R., Laccases: Complex architectures for one-electron oxidations. Biochem.-Moscow, 77, 1395–1407, 2012.
23. Bertrand, T., Jolivalt, C., Caminade, E., Joly, N., et al., Purification and preliminary crystallographic study of Trametes versicolor laccase in its native form. Acta Crystallographica Section D—Biological Crystallography, 58, 319–321, 2002.
24. Yoshida, H., LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the Chemical Society of Tokio. J. Chem. Soc. Transactions, 43, 472–486, 1883.
25. Bergel, A., Feron, D., Mollica, A., Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Comm., 7, 900–904, 2005.
26. He, Z., Angenent, L.T., Application of bacterial biocathodes in microbial fuel cells. Electroanal., 18, 2009–2015, 2006.
27. Rhoads, A., Beyenal, H., Lewandowski, Z., Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol., 39, 4666–4671, 2005.
28. Van Eerten-Jansen, M., Ter Heijne, A., Buisman, C.J.N., Hamelers, H.V.M., Microbial electrolysis cells for production of methane from CO2: Long-term performance and perspectives. Int. J. Energy Res., 36, 809–819, 2012.
29. Gacitua, M.A., Munoz, E., Gonzalez, B., Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH. Bioelectrochem., 119, 26–32, 2018.
30. Dykstra, C.M., Pavlostathis, S.G., Methanogenic Biocathode Microbial Community Development and the Role of Bacteria. Environ. Sci. Technol., 51, 5306–5316, 2017.
31. Cournet, A., Delia, M.L., Bergel, A., Roques, C., Berge, M., Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Grampositive. Electrochem. Comm., 12, 505–508, 2010.
32. McCormick, A.J., Bombelli, P., Bradley, R.W., Thorne, R., et al., Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci., 8, 1092–1109, 2015.
33. Schlager, S., Haberbauer, M., Fuchsbauer, A., Hemmelmair, C., et al., Bio-Electrocatalytic Application of Microorganisms for Carbon Dioxide Reduction to Methane. Chemsuschem, 10, 226–233, 2017.
34. Wan, L.L., Li, X. J., Zang, G.L., Wang, X., et al., A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell. Rsc Adv., 5, 82276–82281, 2015.
35. Rojas, M.D.A., Mateos, R., Sotres, A., Zaiat, M., et al., Microbial electrosynthesis (MES) from CO2 is resilient to fluctuations in renewable energy supply. Energy Conver. Manage., 177, 272–279, 2018.
36. Tischer, W., Wedekind, F., Immobilized Enzymes: Methods and Applications, in: Biocatalysis—From Discovery to Application, Fessner, W.-D., Archelas, A., Demirjian, D. C., Furstoss, R., et al. (Eds.), pp. 95–126, Springer, Berlin Heidelberg, 1999.
37. Homaei, A.A., Sariri, R., Vianello, F., Stevanato, R., Enzyme immobilization: an update. J. Chem. Biol., 6, 185–205, 2013.
38. Zhang, D.-H., Yuwen, L.-X., Peng, L.-J., Parameters affecting the performance of immobilized enzyme. J. Chem., 2013, 2013.
39. Vasylieva, N., Marinesco, S., Enzyme Immobilization on Microelectrode Biosensors, in: Microelectrode Biosensors, Marinesco, S., Dale, N. (Eds.), pp. 95–114, Humana Press, Totowa, NJ, 2013.
40. Nguyen, H.H., Kim, M., An overview of techniques in enzyme immobilization. Appl. Sci. Convergence Technol., 26, 157–163, 2017.
41. Minteer, S.D., Enzyme Stabilization and Immobilization: Methods and Protocols, Springer New York, 2018.
42. Rincón, R.A., Lau, C., Luckarift, H.R., Garcia, K.E., et al., Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosens. Bioelectron., 27, 132–136, 2011.
43. Yu, E.H., Sundmacher, K., Enzyme electrodes for glucose oxidation prepared by electropolymerization of pyrrole. Proc. Safet. Environ. Prot., 85, СКАЧАТЬ