Название: The Official (ISC)2 CCSP CBK Reference
Автор: Leslie Fife
Издательство: John Wiley & Sons Limited
Жанр: Зарубежная компьютерная литература
isbn: 9781119603467
isbn:
The security issues of containerization must first be addressed through education and training. Traditional DevOps practices and methodologies do not always translate to secure containerization. The use of specialized container operating systems is also beneficial as it limits the capabilities of the underlying OS to those functions a container may need. Much like disabling network ports that are unused, limiting OS functionality decreases the attack surface. Finally, all management and security tools used must be designed for containers. A number of cloud-based security services are available.
There are many containerization solutions provided by major CSPs. One can easily find articles that extoll the virtues of one solution over another. As with other areas of technology, which is best is often a matter of who you ask. Determining which solution is best for your organization requires comparing costs and features.
Common Threats
Previous sections dealt with threats that are related to the specific technologies that are key parts of cloud computing, such as virtualization, media sanitization, and network security. However, all other threats that may attack traditional services are also of concern. Controls that are used to protect access to software solutions, data transfer and storage, and identity and access control in a traditional environment must be considered in a cloud environment as well.
UNDERSTAND DESIGN PRINCIPLES OF SECURE CLOUD COMPUTING
As processes and data move to the cloud, it is only right to consider the security implications of that business decision. Cloud computing is as secure as it is configured to be. With careful review of CSPs and cloud services, as well as fulfilling the customer's shared responsibilities for cloud security, the benefits of the cloud can be obtained securely. The following sections discuss methods and requirements that help the customer work securely in the cloud environment.
Cloud Secure Data Lifecycle
As with all development efforts, the best security is the security that is designed into a system. The cloud secure data lifecycle can be broken down into six steps or phases.
Create: This is the creation of new content or the modification of existing content.
Store: This generally happens at creation time. This involves storing the new content in some data repository, such as a database or file system.
Use: This includes all the typical data activities such as viewing, processing, and changing.
Share: This is the exchange of data between two entities or systems.
Archive: Data is no longer used but is being stored.
Destroy: Data has reached the end of its life, as defined in a data retention policy or similar guidance. It is permanently destroyed.
At each of these steps in the data's lifecycle, there is the possibility of a data breach or data leakage. The general tools for preventing these are encryption and the use of data loss prevention (DLP) tools.
Cloud-Based Disaster Recovery and Business Continuity Planning
A business continuity plan (BCP) is focused on keeping a business running following a disaster such as weather, civil unrest, terrorism, fire, etc. The BCP may focus on critical business processes necessary to keep the business going while disaster recovery takes place. A disaster recovery plan (DRP) is focused on returning to normal business operations. This can be a lengthy process. The two plans work together.
In a BCP, business operations must continue, but they often continue from an alternate location. So, the needs of BCP include space, personnel, technology, process, and data. The cloud can support the organization with many of those needs. A cloud solution provides the technology infrastructure, processes, and data to keep the business going.
Availability zones in a region are independent data centers that protect the customer from data center failures. Larger CSPs like AWS, Azure, and Google define regions. Within a region, latency is low. However, a major disaster could impact all the data centers in a region and eliminate all availability zones in that region. A customer can set up their plan to include redundancy across a single region using multiple availability zones, or redundancy across multiple regions to provide the greatest possible availability of your necessary technology, processes, and data.
One drawback of multiregion plans is that the cost grows quickly. For this reason, many organizations only put their most critical data—the core systems that they cannot operate the business without—across two or more regions, but less critical processes and data may be stored in a single region. Functions and data that are on-premise may also utilize cloud backups. But they may not be up and running as quickly as the cloud-based solutions. The business keeps operating, although not all business processes may be enabled.
DRPs rely heavily on data backups. A DRP is about returning to normal operations. And returning the data to the on-premise environment is part of that. After the on-premise infrastructure has been rebuilt, reconfigured, or restored, the data must be returned.
One failure of many DRPs is the lack of an offsite backup or the ability to quickly access that data backup. In the cloud, a data backup exists in the locations (regions or availability zones) you specify and is available from anywhere network access is available. A cloud-based backup works only if you have network access and sufficient bandwidth to access that data. That must be part of the DRP, along with an offsite data backup. A physical, local backup can also be beneficial. Not every disaster destroys the workplace.
Cost-Benefit Analysis
Cloud computing is not always the correct solution. Which is the correct solution is a business decision guided by a cost-benefit analysis. Cloud computing benefits include reduced capital costs as the individual customers no longer have to buy the hardware and system software that the CSP provides. The lowered capital expenses are offset by higher operating costs, as the customers must pay for the services used.
In many countries, capital expenses and operational expenses are treated very differently for tax purposes. For example, capital expenses may be written off or depreciated over a number of years. To write off the entire business of expenses of new infrastructure, purchased and installed on-premise could take many years. Operational expenses, such as the cost of cloud computing, can usually be written off as a business expense in the year the expense is incurred.
The business must understand the cost and tax implications of moving to the cloud or investing in on-premise infrastructure to make the choice most beneficial to the business. A move to the cloud may be as much (or more) for financial reasons than technical ones. This move should be considered only if the benefits justify the cost or if the benefits lower the costs.
Functional Security Requirements
Functional security requirements can make the move to cloud computing or the governance of cloud СКАЧАТЬ