Biodiesel Technology and Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biodiesel Technology and Applications - Группа авторов страница 17

Название: Biodiesel Technology and Applications

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119724933

isbn:

СКАЧАТЬ the need of stepwise addition of alcohol. All these things in combination increase production of biodiesel. Organic solvents that are commonly used include tert-butanol, petroleum ether, hexane, and n-heptane [102]. Some other organic solvents that are used are 2-butanol, cyclohexane, isooctane, acetone, 1,4-dioxane, and chloroform. While considering nature of organic solvents, hydrophobic organic solvents are majorly used. Hydrophobicity of the organic solvents helps in accumulating water molecules around enzyme which is important for enzyme structural stability [103]. Polar or hydrophilic solvents work opposite to hydrophobic organic solvents by playing role in distortion of enzymatic structure. But solvent with little polarity can be beneficial to dissolve oil and alcohol. For example, hydrophilic 1,4-dioxane and tert-butanol have produced some good results by producing high enzymatic transesterification yield [104]. Tert-butanol, having moderate polarity, eliminates glycerol and methanol inhibition problem for enzyme because it can dissolve both in itself. This makes the enzyme more stable and active and then ultimately produce better reaction yield [105]. Tertbutanol is the most common solvent that proved its effectiveness in various cases. According to Royon et al. [84], cottonseed oil was transesterified in the presence of Candida antartica lipase. Methanol was found to be the cause of enzyme inhibition in the reaction but when tert-butanol was used as solvent, reaction yield goes up to 97% with minimal enzyme inhibition. Similarly, in another research experiment, tert-butanol was tested for its effectiveness when rapeseed oil was used as substrate for biodiesel production. In solvent-free system, methyl ester yield was 10% but after utilizing tert-butanol yield was 75%. But under optimum conditions having Lipozyme TL IM and Novozyme 435 both in the reaction system, biodiesel yield reached 95% and the reaction was so stable that enzymes did not lose their activity even after 200 cycles. Reaction was favored and well supported by tert-butanol [86].

      Transesterification of oils for biodiesel production is done using either chemical or enzymatic catalyst [108]. An enzymatic catalyst is used at first place due to their normal reaction conditions, reusability, easy products separation, and production of high-quality product. There is less energy consumption in enzyme catalysis as it occurs at a low temperature as compared to chemical catalysis requiring high energy consumption [109, 110]. Further, enzymatic catalysis is environment-friendly as there is no wastewater production and produces pure biodiesel as compared to chemical catalysis [107]. Among enzymatic catalysts, lipase with excellent biochemical and physiological properties is most commonly used to catalyze the transesterification process. Lipases play their role in several industrial processes like alcoholysis, acidolysis, amynolysis, and hydrolysis reactions but their leading role in biodiesel production is considered very important [108–111]. The use of lipase in biodiesel production is proved to be beneficial due to its characteristics like high efficiency, convert FFAs completely into methyl/ethyl esters, reaction specificity, require low temperature, minimum energy consumption, and fewer side products [109]. Lipases belong to class “hydrolases” as they carry out hydrolyses of triglycerides producing glycerol and fatty acids from it in an oil-water interface [110]. A general reaction for biodiesel production using lipase is as follows:

      1.7.1 Mechanisms of Lipase Action

      Lipases interact with ester bonds of their substrate like acylglycerols to catalyze the reactions of hydrolysis, synthesis, and transesterification. Triglycerides, which are insoluble and long chained fatty acids, are precisely catalyzed by lipases [113]. Lipase carries out triglyceride oil transesterification with methanol in three reversible steps with the first step for conversion of triglycerides to diglycerides followed by the second step of diglycerides to monoglycerides conversion, and finally, monoglycerides convert into glycerol molecules. Here, each conversion step produces one FAME molecule; hence, a total of three FAME molecule are produced from one triglyceride [116]. Two models are mainly under discussion to describe the kinetics mechanism for esterification reactions, Michaelis-Menten kinetics and Ping Pong Bi Bi model. Lipase catalyzed esterification mainly elaborated by Ping Pong Bi Bi mechanism which is a bi-substrate reaction that releases two products. It involves following steps: 1) acyl-donor donate their acyl group to the enzyme resulting in the formation of acyl-enzyme complex, 2) release of the water molecule as a product, 3) binding of acyl acceptor with the enzyme complex, and 4) release of ester [117, 118]. Many researchers made some modifications in this model depending upon inhibiting factors [118]. The catalytic activity begins with the transient tetrahedral intermediate formation with a negatively charged carbonyl СКАЧАТЬ