Biodiesel Technology and Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biodiesel Technology and Applications - Группа авторов страница 13

Название: Biodiesel Technology and Applications

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119724933

isbn:

СКАЧАТЬ not a food for human or nor a fodder for animals on a larger scale. These plants or marginal grasses can be used for the production of second-generation bio-fuels. There have been a lot of research investigations to produce biodiesel using non-edible plant oils such as keranja oil, Jatropha curcas oil, tobacco oil, Calophyllum inophyllum oil, and castor oil [8]. Jatropha is an effective source of biodiesel production because of 30%–50% oil contents in its seeds [9]. The actual precursors of most of the second-generation biodiesel production are waste oils either in the form of waste cooking or industrial oils or animal fats. The utilization of these waste materials as feed stock helps in managing and disposing of waste material, which is one of the biggest problem for earth, for the benefit of environment [10]. In order to comprehend different biofuels, we can categorize them into four types which include biodiesel, bioalcohol (biomethanol, bioethanol, biobutanol), biogas, and biohydrogen. The most widely used biofuels are liquid biofuels such as biodiesel and bioethanol. Biofuels can be blended with other petro-based fuels in order to manage and enhance quality and quantity of fuel. Biofuel production includes chemical, thermal, and enzymatic methods. Among all methods, the most effective way to produce biofuels is through enzymes or biocatalysts [11]. Enzymes are becoming the focus of research to produce biofuels because of their advantages over other biofuel production techniques [12]. In this chapter, we discuss biodiesel production using biocatalytic processes and methods where different microbial enzymes (obtained from microorganisms) are used.