Название: Mantle Convection and Surface Expressions
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119528593
isbn:
58 Masters, G., G. Laske, H. Bolton, & A. Dziewonski (2000). The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, vol. 117, edited by S.‐i. Karato, A. M. Forte, R. Lieberman, G. Masters, & L. Stixrude, pp. 63–87, American Geophysical Union, Washington, D. C.
59 Matthews, K. J., K. T. Maloney, S. Zahirovic, S. E. Williams, M. Seton, & R. D. Müller (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250, doi:10.1016/j.gloplacha.2016.10.002.
60 McNamara, A. K., & S. Zhong (2004). Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res., 109(B7), B07,402, doi:10.1029/2003JB002847.
61 McNamara, A. K., & S. Zhong (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062), 1136–1139, doi:10.1038/nature04066.
62 Milne, G. A., J. X. Mitrovica, & A. M. Forte (1998). The sensitivity of glacial isostatic adjustment predictions to a low‐viscosity layer at the base of the upper mantle. Earth and Planetary Science Letters, 154(1), 265–278, doi:10.1016/S0012‐821X(97)00191‐X.
63 Mitrovica, J. X., & A. M. Forte (1997). Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables. Journal of Geophysical Research: Solid Earth, 102(B2), 2751–2769, doi:10.1029/96JB03175.
64 Mitrovica, J. X., & A. M. Forte (2004). A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters, 225(1–2), 177–189, doi:10.1016/j.epsl.2004.06.005.
65 Morra, G., D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutsakos, & P. J. Tackley (2010). The fate of the slabs interacting with a density/viscosity hill in the mid‐mantle. Physics of the Earth and Planetary Interiors, 180(3‐4), 271–282, doi:10.1016/j.pepi.2010.04.001.
66 Moulik, P., & G. Ekström (2014). An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long‐period waveforms. Geophysical Journal International, 199(3), 1713–1738, doi:10.1093/gji/ggu356.
67 Moulik, P., & G. Ekström (2016). The relationships between large‐scale variations in shear velocity, density, and compressional velocity in the Earth’s mantle. Journal of Geophysical Research (Solid Earth), 121(4), 2737–2771, doi:10.1002/2015JB012679.
68 Mégnin, C., H.‐P. Bunge, B. Romanowicz, & M. A. Richards (1997). Imaging 3‐D spherical convection models: What can seismic tomography tell us about mantle dynamics? Geophysical Research Letters, 24(11). 1299–1302, doi:10.1029/97GL01256.
69 Nelson, P. L., & S. P. Grand (2018). Lower‐mantle plume beneath the Yellowstone hotspot revealed by core waves, Nature Geoscience, 11(4), 280–284, doi:10.1038/s41561‐018‐0075‐y.
70 Obayashi, M., J. Yoshimitsu, G. Nolet, Y. Fukao, H. Shiobara, H. Sugioka, H. Miyamachi, & Y. Gao (2013). Finite frequency whole mantle P wave tomography: Improvement of subducted slab images. Geophysical Research Letters, 40(21), 2013GL057,401–5657, doi:10.1002/2013GL057401.
71 Panasyuk, S. V., & B. H. Hager (1998). A model of transformational superplasticity in the upper mantle. Geophysical Journal International, 133(3), 741–755, doi:10.1046/j.1365‐246X.1998.00539.x.
72 Puster, P., & T. H. Jordan (1994). Stochastic analysis of mantle convection experiments using two‐point correlation functions. Geophysical Research Letters, 21(4), 305–308, doi:10.1029/93GL02934.
73 Puster, P., T. H. Jordan, & B. H. Hager (1995). Characterization of mantle convection experiments using two‐point correlation functions. Journal of Geophysical Research: Solid Earth, 100(B4), 6351–6365, doi:10.1029/94JB03268.
74 Ricard, Y., M. Richards, C. Lithgow‐Bertelloni, & Y. Le Stunff (1993). A geodynamic model of mantle density heterogeneity. J. Geophys. Res., 98(B12), 21,895, doi:10.1029/93JB02216.
75 Richards, M. A., & B. H. Hager (1984). Geoid anomalies in a dynamic Earth, Journal of Geophysical Research: Solid Earth, 89(B7), 5987–6002, doi:10.1029/JB089iB07p05987.
76 Richards, M. A., & B. H. Hager (1989). Effects of lateral viscosity variations on long‐wavelength geoid anomalies and topography. J. Geophys. Res., 94(B8), 10,299, doi:10.1029/JB094iB08p10299.
77 Rickers, F., A. Fichtner, & J. Trampert (2013). The Iceland‐Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full‐waveform inversion. Earth and Planetary Science Letters, 367, 39–51.
78 Ries, J., S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough, P. Nagel, N. Pie, S. Poole, T. Richter, H. Save, & B. Tapley (2016). Development and Evaluation of the Global Gravity Model GGM05. Tech. Rep. CSR‐16‐02, The University of Texas at Austin, Center for Space Research.
79 Rudolph, M. L., & S. Zhong (2013). Does quadrupole stability imply LLSVP fixity? Nature, 503(7477), E3–E4, doi:doi:10.1038/nature12792.
80 Rudolph, M. L., & S. J. Zhong (2014). History and dynamics of net rotation of the mantle and lithosphere. Geochemistry, Geophysics, Geosystems, 15(9), 3645–3657.
81 Rudolph, M. L., V. Lekic, & C. Lithgow‐Bertelloni (2015). Viscosity jump in Earth’s mid‐mantle, Science, 350(6266), 1349–1352, doi:10.1126/science.aad1929.
82 Sambridge, M., T. Bodin, K. Gallagher, & H. Tkalcic (2013). Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20110,547, doi:10.1111/j.1365‐246X.1990.tb04588.x.
83 Schuberth, B. S. A., H.‐P. Bunge, & J. Ritsema (2009). Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10(5), doi:10.1029/2009GC002401.
84 Shim, S.‐H., B. Grocholski, Y. Ye, E. E. Alp, S. Xu, D. Morgan, Y. Meng, & V. B. Prakapenka (2017). Stability of ferrous‐iron‐rich bridgmanite under reducing midmantle conditions. Proceedings of the National Academy of Sciences, 114(25), 6468–6473, doi:10.1073/pnas.1614036114.
85 Simons, F., F. Dahlen, & M. Wieczorek (2006). Spatiospectral Concentration on a Sphere. SIAM Review, 48(3), 504–536, doi:10.1137/S0036144504445765.
86 Solomatov, V. S., & C. C. Reese (2008). Grain size variations in the Earth’s mantle and the evolution of primordial chemical heterogeneities. Journal of Geophysical Research: Solid Earth, 113(B7), doi:10.1029/2007JB005319.
87 Steinberger, B., & R. Holme (2008). Mantle flow models with core‐mantle boundary constraints and chemical heterogeneities in the lowermost mantle. Journal of Geophysical Research: Solid Earth, 113(B5), doi:10.1029/2007JB005080.
88 Stixrude, L., & C. Lithgow‐Bertelloni (2011). Thermodynamics of mantle minerals ‐ II. Phase equilibria. Geophysical Journal International, 184(3), 1180–1213, doi:10.1111/j.1365‐246X.2010.04890.x.
89 Su, W.‐j., & A. M. Dziewonski (1991). Predominance of long‐wavelength heterogeneity in the mantle. Nature, 352(6331), 121–126, doi:10.1038/352121a0.
90 Su, W.‐j., & A. M. Dziewonski (1992). On the scale of mantle heterogeneity, СКАЧАТЬ