Modern Trends in Structural and Solid Mechanics 2. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Modern Trends in Structural and Solid Mechanics 2 - Группа авторов страница 19

Название: Modern Trends in Structural and Solid Mechanics 2

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119831846

isbn:

СКАЧАТЬ F.A. (1979). Ermittlung von Eigenkreisfrequenzen schwingender Rechteckplatten mit Hilfe der asymptotishen Methode von Bolotin. Stahlbau, 49(11), 327–334.

      Gavrilov, Y.V. (1961a). Determination of natural vibration frequencies of elastic circular cylindrical shells. Izv. AN SSSR OTN Mech. Mashin., 1, 161–163.

      Gavrilov, Y.V. (1961b). Investigation of the spectrum of natural oscillations of elastic cylindrical shells. Tr. Konf. po Teorii Plastin i Obolochek, Kazan State University, 72–76.

      Gibigaye, M., Yabi, C.P., Alloba, I.E. (2016). Dynamic response of a rigid pavement plate based on an inertial soil. Int. Schol. Res. Not., 1–9.

      Golubeva, T.N., Korobkov, Y.S., Khromatov, V.E. (2013). The influence of a longitudinal magnetic field on the frequency spectra of oscillations of ferromagnetic plates. Electrotechnika, 3, 44–48.

      Gontkevich, V.S. (1964). Natural Oscillations of Plates and Shells. Naukova Dumka, Kiev.

      Kauderer, H. (1958). Nichtlineare Mechanik. Springer, Berlin, Göttingen, Heidelberg.

      Kaza, V. and Ramaiah, G.K. (1978). Use of asymptotic solutions from a modified Bolotin method for obtaining natural frequencies of clamped rectangular orthotropic plates. J. Sound Vib., 59(3), 335–347.

      Keller, J.B. and Rubinow, S.I. (1960). Asymptotic solution of eigenvalue problems. Ann. Phys., 9(1), 24–75. Errata, Ann. Phys., 9(2).

      Khromatov, V.E. (1972a). Properties of spectra of thin circular cylindrical shells oscillating near momentless stress state. Mech. Solids, 7(2), 103–108.

      Khromatov, V.E. (1972b). Density of frequencies of natural oscillations of thin spherical shells in momentless stress state. Trudy Moscow Energet. Inst., 101, 148–153.

      Khromatov, V.E. and Golubeva, T.N. (2013). Oscillations and stability of a ferromagnetic cylindrical shell in a magnetic field. Vestnik Moscow Avia. Inst., 20(3), 212–219.

      King, W.W. and Lin, C.-C. (1974). Application of Bolotin’s method to vibrations of plates. AIAA J., 12(3), 399–401.

      Kline, S.J. (1965). Similitude and Approximation Theory. McGraw-Hill, New York.

      Koreshkova, N.S. and Khromatov, V.E. (2009). On the influence of a transverse magnetic field on the vibration spectra of shallow shells. Mech. Solids, 44, 632–638.

      Krizhevskii, G.A. (1988). Combination of Rayleigh and dynamic edge effect methods in studying vibrations of rectangular plates. J. Appl. Mech. Techn. Phys., 29(6), 919–921.

      Krizhevskii, G.A. (1989). Vibration and stability of orthotropic rectangular plates. Sov. Appl. Mech., 25(8), 822–825.

      Kudryavtsev, E.P. (1960). Influence of shear deformation and rotary inertia on flexural vibration of an elastic beam. Izv. AN SSSR OTN Mech. Mashin., 5, 156–159.

      Kudryavtsev, E.P. (1964). Application of asymptotic method for investigating the eigenfrequencies of elastic rectangular plates. Rasch. Prochn., 10, 352–362.

      Lin, C.C. and King, W.W. (1974). Free transverse vibrations of rectangular unsymmetrically laminated plates. J. Sound Vib., 36(1), 91–103.

      Maslov, V.P. and Fedoryuk, M.V. (1981). Semi-classical Approximation in Quantum Mechanics. Kluwer, Dordrecht.

      Meilani, M. (2012). Modified Bolotin method to obtain the natural frequency of stiffened plate with semirigid support. Procedia Eng., 50, 110–121.

      Meilani, M. (2015). Obtaining the natural frequency of stiffened plate with modified Bolotin method. Int. J. Appl. Eng. Res., 9(23), 21501–21512.

      Mikhlin, Y.V. and Avramov, K.V. (2011). Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev., 63(6), 060802–21.

      Moskalenko, V.N. (1961). On the application of refined theories of bending of plates in free vibration problems. Inzh. Zh., 1(3), 93–101.

      Moskalenko, V.N. (1968). Random vibrations of multi-span plates. Mech. Solids, 3(4), 79–84.

      Moskalenko, V.N. (1969). On the vibrations of multispan plates. Rasch. Prochn., 14, 360–367.

      Moskalenko, V.N. (1972). On the frequency spectra of natural vibrations of shells of revolution. J. Appl. Math. Mech., 36(2), 279–283.

      Moskalenko, V.N. (1975). Frequency spectra and modes of free vibrations of doubly periodic systems. J. Appl. Math. Mech., 39, 503–510.

      Moskalenko, V.N. and Chen, D.L. (1965). On natural vibrations of multispan uncut plates. Prikl. Mekh. (Appl. Mech.), 1(3), 59–66.

      Nayfeh, A.H. (2000). Perturbation Methods. Wiley, New York.

      Nelson, H.M. (1978). High frequency flexural vibration of thick rectangular bars and plates. J. Sound Vib., 60, 101–118.

      Pevzner, P., Berkovits, A., Weller, T. (2000). Further modification of Bolotin method in vibration analysis of rectangular plates. AIAA J., 38(9), 1725–1729.

      Reissner, H.J. (1912). Spannungen in Kugelschalen (Kuppeln). Festschrift Heinrich Müller-Breslau gewidmet nach Vollendung seines sechzigsten Lebensjahres. Alfred-Kröner Verlag, Leipzig, 181–193.

      Rich, B. and Janos, L. (1994). Skunk Works: A Personal Memoir of My Years at Lockheed. Little Brown, Boston.

      Rosenberg, R.M. (1962). The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech., 29, 7–14.

      Shtaerman, I.Y. (1924). On the application of the method of asymptotic integration to the calculation of elastic shells. Izv. Kievskogo Polit. & S.-H. Inst., 1(2), 75–99.

      Stearn, S.M. (1970). Spatial variation of stress strain and acceleration in structures subject to broad frequency band excitation. J. Sound Vib., 12, 85–97.

      Ueng, C.E.S. and Nickels Jr., R.C. (1978). Dynamic response of structural panel by Bolotin’s method. Int. J. Solids Struct., 14(7), 571–578.

      Ufimtsev, P.Y. (1962). Method of Edge Waves in the Physical Theory of Diffraction, translated by Foreign Technology Division Wright-Patterson AFB. Def. Techn. Inf. Center, Cameron Station, Alexandria.

      Ufimtsev, P.Y. (2003). Theory of Edge Diffraction in Electromagnetics. Tech Science Press, Encino, California.

      Vakhromeev, Y.M. and Kornev, V.M. (1972). Dynamic edge effect in beams. Formulation of truncated problems. Mech. Solids, 7(4), 95–103.

      Vijaykumar, СКАЧАТЬ