Название: Modern Trends in Structural and Solid Mechanics 2
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119831846
isbn:
Andrianov, I.V. and Krizhevsky, G.A. (1993). Free vibration analysis of rectangular plates with structural inhomogeneity. J. Sound Vib., 162(2), 231–241.
Andrianov, I.V., Manevitch, L.I., Kholod, E.G. (1979). On the nonlinear oscillation of rectangular plates. Struct. Mech. Theory Struct., 5, 48–51.
Andrianov, I.V., Awrejcewicz, J., Manevitch, L.I. (2004). Asymptotical Mechanics of Thin-Walled Structures: A Handbook. Springer-Verlag, Heidelberg, Berlin.
Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V., Ivankov, A.O. (2014). Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions. John Wiley & Sons, Chichester.
Avramov, K.V. and Mikhlin, Y.V. (2013). Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev., 65(2), 020801-20.
Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I. (1998). Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications. Springer-Verlag, Heidelberg, Berlin, New York.
Babich, V.M. and Buldyrev, V.S. (1991). Asymptotic Methods in Short-Wavelength Diffraction Theory. Springer, Berlin.
Babich, V.M., Buldyrev, V.S., Molotkov, I.A. (1985). A Space-Time Ray Method. Leningrad University, Leningrad.
Bagdasaryan, G.E. (1986). Application of V.V. Bolotin’s asymptotic methods for investigation of magnetoelastic vibration of rectangular plates. Probl. Mashinostr., 25, 63–68.
Bauer, S.M., Filippov, S.B., Smirnov, A.L., Tovstik, P.E., Vaillancourt, R. (2015). Asymptotic Methods in Mechanics of Solids. Birkhäuser, Basel.
Birger, I.A. and Panovko, Y.G. (1968). Prochnost. Ustoichivost. Kolebaniya (Strength. Stability. Oscillations Handbook) 3. Mashinostroyenie, Moscow.
Blumenthal, O. (1912). Über asymptotische Integration von Differentialgleichungen mit Anwendung auf eine asymptotische Theorie der Kugelfunctionen. Archiv Math. Physik, ser. 3, 19, 136–174.
Blumenthal, O. (1914). Über asymptotische Integration von Differentialgleichungen mit Anwendung auf die Berechnung von Spannungen in Kugelschalen. Z. Math. Physik, 62, 343–358. Extract previously appeared in Proc. Fifth Intern. Cong. Math., Cambridge (1913), II, 319–327.
Bolotin, V.V. (1960a). Dynamic edge effect in the elastic vibrations of plates. Inzh. Sb., 31, 3–14.
Bolotin, V.V. (1960b). The edge effect in the oscillations of elastic shells. J. Appl. Math. Mech., 24(5), 1257–1272.
Bolotin, V.V. (1961a). A generalization of the asymptotic method of the eigenvalue problems for rectangular regions. Inzh. Zh., 1(3), 86–92.
Bolotin, V.V. (1961b). An asymptotic method for the study of the problem of eigenvalues of rectangular regions. Problems of Continuum Mechanics, SIAM, 56–68.
Bolotin, V.V. (1961c). Asymptotic method in the theory of oscillations of elastic plates and shells. Tr. Konf. po Teorii Plastin i Obolochek, Kazan State University, 21–26.
Bolotin, V.V. (1961d). The natural oscillations of a rectangular elastic parallelepiped. J. Appl. Math. Mech., 25(1), 220–227.
Bolotin, V.V. (1963). On the density of the distribution of natural frequencies of thin elastic shells. J. Appl. Math. Mech., 27(2), 538–543.
Bolotin, V.V. (1966). Broadband random vibrations of elastic systems. Int. J. Solids Struct., 2(1), 105–124.
Bolotin, V.V. (1970). Application of edge effect theory to forced vibration analysis of elastic systems. Trudy Moscow Energet. Inst. Dyn. Soprot. Mater., 74, 180–192.
Bolotin, V.V. (1984). Random Vibrations of Elastic Systems. Springer, Dordrecht.
Bolotin, V.V. (2006). 80th birthday tribute. J. Appl. Math. Mech., 70(2), 161–175.
Bolotin, V.V., Marein N.S., Vinokurov A.I., Poznyak E.L., Ivovich V.A. (1958). Vibration and vibrational strength of overhead power lines. Nauch. Dokl. Vish. Shkoly. Energetika, 2, 55–62.
Bolotin, V.V., Makarov, V.P., Mishenkov, G.V., Shveiko, Yu.Yu. (1960). Asymptotic method of investigating the eigenfrequency spectrum of elastic plates. Rasch. Prochn., 6, 231–253.
Bolotin, V.V., Gol’denblat, I.I., Smirnov, A.F. (1961). Modern Problems of Structural Mechanics. Stroyizdat, Moscow.
Chen, G. and Zhou, J. (1993). Vibration and Damping in Distributed Systems Vol. II: WKB and Wave Methods, Visualization and Experimentation. CRC Press, Boca Raton.
Chen, G., Coleman, M.P., Zhou, J. (1991). Analysis of vibration eigenfrequencies of a thin plate by the Keller-Rubinow wave method I: Clamped boundary conditions with rectangular or circular geometry. SIAM J. Appl. Math., 51(4), 967–983.
Chen, G., Coleman, M.P., Zhou, J. (1992). The equivalence between the wave propagation method and Bolotin’s method in the asymptotic estimation of eigenfrequencies of a rectangular plate. Wave Motion, 16(3), 285–297.
Crighton, D.G. (1994). Asymptotics – An indispensable complement to thought, computation and experiment in applied mathematical modelling. In Seventh Europ. Conf. Math. Ind., Fasano, A., Primicerio, M.B., Teubner, G. (eds). B.G. Teubner, Stuttgart.
Dickinson, S.M. (1971). The flexural vibration of rectangular orthotropic plates subject to in-plane forces. J. Appl. Mech., 38(3), 699–700.
Dickinson, S.M. (1975a). Bolotin’s method applied to the buckling and lateral vibration of stressed plates. AIAA J., 13(1), 109–110.
Dickinson, S.M. (1975b). Modified Bolotin’s method applied to buckling and vibration of stressed plates. AIAA J., 13(12), 1672–1673.
Dickinson, S.M. and Warburton, G.B. (1967). Natural frequencies of plate systems using the edge effect method. J. Mech. Eng. Sci., 9(4), 318–324.
Dubovskikh, Y.A., Khromatov, V.E., Chirkov, V.E. (1996). Asymptotic analysis of stability and postcritical behavior of elastic panels in a supersonic flow. Mech. Solids, 31(3), 65–75.
Elishakoff, I. (1974). Vibration analysis of clamped square orthotropic plate. AIAA J., 12, 921–924.
Elishakoff, I. (1976). Bolotin’s dynamic edge-effect method. Shock Vibr. Digest, 8(1), 95–104.
Elishakoff, I. and Steinberg, A. (1979). Eigenfrequencies of continuous plates with arbitrary number of equal spans. J. Appl. Mech., 46, 656–662.
Elishakoff, I. and Wiener, F. (1976). Vibration of an open shallow cylindrical shell. J. Sound Vibr., 44, 379–392.
Elishakoff, I., Steinberg, A., van Baten, T. (1993). Vibration of multispan stiffened plates via modified dynamic edge effect method. Comp. Meth. Appl. Mech. Eng., 105, 211–223.
Elishakoff, I., Lin, Y.K., Zhu, L.P. (1994). Probabilistic and Convex Modelling of Acoustically Excited Structures. Elsevier, СКАЧАТЬ