Biogeography in the Sub-Arctic. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biogeography in the Sub-Arctic - Группа авторов страница 25

Название: Biogeography in the Sub-Arctic

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781118561355

isbn:

СКАЧАТЬ data demonstrate that this biogeographic concept is all open for discussion.

      The North Atlantic Land Bridge

      Most recent investigations of an exceptionally rich plant fossil record demonstrate that the NALB facilitated plant migration between North America and Europe until the late Miocene. This finding is in agreement with low molecular divergences found both for animal and plant lineages with a transatlantic distribution. Little genetic differentiation of these lineages strongly suggests that gene exchange via the NALB must have occurred long into the Neogene (Denk and Grimm 2010; Kornobis et al. 2011). The improved understanding of the history of the NALB is crucial for basic biogeographic assumptions. For example, Donoghue and Smith (2004) based on molecular divergence times between transatlantic sister lineages (erroneously) suggested that taxa with an inferred divergence time of less than 30 million years ago must have migrated from North America via the Bering Strait (and via East and Central Asia) to Europe. The quality of future biogeographic studies using modern plants and molecular differentiation patterns to infer historical biogeography will largely depend on revised fossil data in order to arrive at meaningful biogeographic scenarios.

      1 Boulter, M.C. and Kvaček, Z. (1989). The Palaeocene flora of the Isle of Mull. Special Papers in Palaeontology 42: 1–149.

      2 Boulter, R.D. and Manum, S.B. (1989). The Brito‐Arctic Igneous Province flora around the Palaeocene/Eocene boundary. Proceedings of the Ocean Drilling Program 104B: 663–680.

      3 Budantsev, L.Y. and Golovneva, L.B. (2009). Fossil Flora of Arctic, II. Paleogene Flora of Spitsbergen. St. Petersburg: Russian Academy of Sciences, Komarov Botanical Institute.

      4 Camus, A. (1929). Les châtaigniers. Monographie des genres Castanea et Castanopsis. Paris: Lechevalier.

      5 Camus, A. (1936–1938). Les Chênes. Monographie du genre Quercus. Tome I. Genre Quercus, sous‐genre Cyclobalanopsis, sous‐genre Euquercus (sections Cerris et Mesobalanus). Paris: Lechevalier.

      6 Camus, A. (1938–1939). Les Chênes. Monographie du genre Quercus. Tome II. Genre Quercus, sous‐genre Euquercus (sections Lepidobalanus et Macrobalanus). Paris: Lechevalier.

      7 Camus, A. (1952–1954). Les Chênes. Monographie du genre Quercus. Tome III. Genre Quercus, sous‐genre Euquercus (sections Protobalanus et Erythrobalanus) et genre Lithocarpus. Paris: Lechevalier.

      8 Chambers, L.M. and Pringle, M.S. (2001). Age and duration of activity at the Isle of Mull Tertiary igneous centre, Scotland, and confirmation of the existence of subchrons during Anomaly 26r. Earth and Planetary Science Letters 193: 333–345.

      9 Crane, P.R., Manchester, S.R., and Dilcher, D.L. (1988). Morphology and phylogenetic significance of the angiosperm Platanites hebridicus from the Palaeocene of Scotland. Palaeontology 31: 503–517.

      10 Crepet, W.L. (1989). History and implications of the early North American fossil record of Fagaceae. In: Evolution, Systematics, and Fossil History of the Hamamelidae. Volume 2: ‘Higher’ Hamamelidae (eds. P.R. Crane and S. Blackmore), 45–66. Oxford: Oxford Science Publications.

      11 Dam, G., Pedersen, G.K., Sønderholm, M. et al. (2009). Lithostratigraphy of the Cretaceous‐Palaeocene Nuussuaq Group, Nuussuaq Basin, West Greenland. Geological Survey of Denmark and Greenland Bulletin 19: 1–171.

      12 Denk, T. and Grimm, G.W. (2009a). Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). International Journal of Plant Sciences 170: 926–940.

      13 Denk, T. and Grimm, G.W. (2009b). The biogeographic history of beech trees. Review of Palaeobotany and Palynology 158: 83–100.

      14 Denk, T. and Grimm, G.W. (2010). The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59: 351–366.

      15 Denk, T. and Velitzelos, D. (2002). First evidence of epidermal structures of Ginkgo from the Mediterranean tertiary. Review of Palaeobotany and Palynology 120: 1–15.

      16 Denk, T., Grímsson, F., and Kvaček, Z. (2005). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society 149: 369–417.

      17 Denk, T., Grímsson, F., and Zetter, R. (2010a). Episodic migration of oaks to Iceland: evidence for a North Atlantic “land bridge” in the latest Miocene. American Journal of Botany 97: 276–287.

      18 Denk, T., Tekleva, M.V., Zetter, R. & Hofmann, C.‐C. 2010b. Importance of pollen characteristics for systematics of living and fossil oaks (Quercus, Fagaceae). 8th European Palaeobotany–Palynology Conference, Budapest, Program and Abstracts, p. 78.

      19 Denk, T., Grímsson, F., Zetter, R., and Símonarson, L.A. (2011). Late Cainozoic Floras of Iceland – 15 Million Years of Vegetation and Climate History in the Northern North Atlantic. Dordrecht: Springer.

      20 Denk, T., Grímsson, F., and Zetter, R. (2012). Fagaceae from the early Oligocene of Central Europe: persisting New World and emerging Old World biogeographic links. Review of Palaeobotany and Palynology 169: 7–20.

      21 Denk, T., Velitzelos, D., Güner, T.H. et al. (2017). Taxonomy and palaeoecology of two widespread western Eurasian sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger. Review of Palaeobotany and Palynology 241: 98–128.

      22 Donoghue, M.J. and Smith, S.A. (2004). Patterns in the assembly of temperate forests around the Northern Hemisphere. Philosophical Transactions of the Royal Society of London Series B –Biological Sciences 359 (1450): 1633–1644.

      23 Engler, A. 1879. Versuch einer Entwicklungsgeschichte der Pflanzenwelt, insbesondere der Florengebiete seit der Tertiärperiode. 1. Theil. Die extratropischen Gebiete der nördlichen Hemisphäre. Wilhelm Engelmann, Leipzig.

      24 Fischer, T.C., Butzmann, R., Meller, B. et al. (2009). The morphology, systematic position and inferred biology of Spirematospermum – an extinct genus of Zingiberales. Review of Palaeobotany and Palynology 157: 391–426.

      25 Gardner, J.S. (1884). On the evidence of fossil plants regarding the age of the tertiary basalts of the north‐East Atlantic. Proceedings of the Royal Society of London 38: 14–23.

      26 Gardner, J.S. (1887). On the leaf‐beds and gravels of Ardtun, Carsaig, etc. in Mull, with notes by G.A.C. Cole. Quaternary Journal of the Geological Society London 43: 270–301.

      27 Grímsson, F. and Denk, T. (2005). Fagus from the Miocene of Iceland: systematics and biogeographical considerations. Review of Palaeobotany and Palynology 134: 27–54.

      28 Grímsson, F. and Denk, T. (2007). Floristic turnover in Iceland from 15 to 6 Ma – extracting biogeographic signals from fossil floral assemblages. Journal of Biogeography 34: 1490–1504.

      29 Grímsson, F. and Símonarson, L.A. (2006). Beyki úr íslenskum setlögum. Náttúrufræðingurinn 74: 81–102.

      30 Grímsson, F. and Símonarson, L.A. (2008a). Íslands fornu skógar. Skógræktarritið 2: 14–30.

      31 Grímsson, F. and Símonarson, L.A. (2008b). Upper tertiary non‐marine environments and climatic changes in Iceland. Jökull 58: 303–314.

      32 Grímsson, F., Símonarson, L.A., and Friedrich, W.L. (2005). Kynlega stór aldin úr síðtertíerum setlögum á Íslandi. Náttúrufræðingurinn СКАЧАТЬ