Название: Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления
Автор: Алекс Беллос
Издательство: Манн, Иванов и Фербер (МИФ)
Жанр: Дом и Семья: прочее
Серия: МИФ Кругозор
isbn: 9785001468493
isbn:
Binae, sola, duae, mulier, duo, vir mulierque,
Bini, sola, duae, solus, vir cum muliere.
В XVII веке пары состояли из господ и камердинеров. Каждый господин запрещал своему камердинеру путешествовать вместе с другим господином, чтобы тот его не убил. В XIX столетии характер социального противостояния в корне изменился: парами стали хозяева и слуги, причем слугам не разрешалось численно превосходить количество хозяев на любом берегу, чтобы у них не возникло искушения их ограбить. Затем темы сексизма и классовой борьбы сменила ксенофобия: в классической версии задачи появилась путешествующая группа из трех миссионеров и трех голодных каннибалов. Из истории этой головоломки можно узнать об эволюции социальных стереотипов столько же, сколько и о математике.
Задача о переправе появилась в 80-х годах XX столетия. На рубеже веков компания Microsoft использовала ее в качестве одного из тех пресловутых каверзных вопросов, которые ставят во время собеседования, для проверки навыков решения задач потенциальными сотрудниками. В этой головоломке главное – позволить логике взять верх над интуицией.
Четыре человека (Джон, Пол, Джордж и Ринго) находятся на одной стороне ущелья, соединенной с другой стороной шатким мостом, по которому одновременно могут идти только двое. Поскольку дело происходит вечером, а мост не очень надежный, переходить его нужно с фонарем. У группы всего один фонарь, а ущелье слишком широкое, чтобы можно было перебросить фонарь с одной стороны на другую, поэтому при переходе людям приходится носить его с собой. Джон может перейти через мост за 1 минуту, Пол за 2 минуты, Джордж за 5 минут, а Ринго за 10 минут. Если мост переходят двое, они передвигаются со скоростью того, кто идет медленнее.
Как нашим героям перебраться через мост за минимальное время?
Очевидный способ решения этой задачи состоит в том, чтобы Джон перевел каждого из друзей через мост по одному, так как именно он может вернуться быстрее всех за следующим человеком. Такая стратегия позволяет всем перейти мост за 2 + 1 + 5 + 1 + 10 = 19 минут. Но действительно ли этот способ самый быстрый?
Вернемся к Алкуину и вопросу из сборника «Задачи для развития молодого ума».
Сколько следов останется в последней борозде после СКАЧАТЬ
5
Гекзаметр (от греч. hex – шесть и metron – мера) – шестистопный дактиль, стихотворный размер в античном стихосложении.