Дидактические основы теории методов обучения неродному языку. Л. В. Московкин
Чтение книги онлайн.

Читать онлайн книгу Дидактические основы теории методов обучения неродному языку - Л. В. Московкин страница 16

СКАЧАТЬ можем не указать на неправомерность противопоставления понятий «второй язык» и «иностранный язык» в англо-американской научной литературе. В соответствии с законами формальной логики второй язык должен быть противопоставлен первому, а иностранный язык неиностранному или уж по крайней мере родному (языку родной страны учащегося). В зарубежной науке, как и в российской, нарушение законов формальной логики, к сожалению, нередкое явление, что следует учитывать при анализе зарубежных концепций.

iVBORw0KGgoAAAANSUhEUgAAA4QAAANGCAMAAACSsLC2AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAADBQTFRFHh4eNzc3UFBQaGhofn5+kZGRoaGhrq6uu7u7ycnJ19fX5eXl7+/v9/f3+/v7////+BflxQAAv11JREFUeNrsXYl23CoMNftu///fPrSAsWeytK9NmkQ6p53M2CwGLhIC626HiIjIp8omTSAiIiAUEREQioiICAhFRASEIiIiAkIREQGhiIiIgFBEREAoIiIiIBQRERCKiIgICEVEBIQiIiICwqPcvuf9vQldkK4VERD+AQn5ikHf3peuBe2ka0UEhH9A9KY2pZTWWoFsW31PqmT6nUm69u/NjdglvVPCUXX/U226Sqt8XxBu1vkOqc14Zzsg63sg2G/f9C5d+9ckOw1tvNl87B7+tEGa+9uCUG2wKgRUxf5Z1Ts0ocPhoUQR/l3BZsbFQdhUkfb4viCsmz0YhOhn8Vt+K4kFBGonw+IDjBTsnV293SkiXxiEGRXgCcL8Zn+HzYQsCPwASaAKM6jEKI3xrTVhaBcQ7uENc7RsRnr0gwRsDnM0afHvviYkmSBkaHYklrJuVpRcx50Frl2g2spQjf2PLjnlyw39J7oPr5a882113N+n+wp/pMr59Z/wws/WuAX8Zcmo/drYZfleGzTv9fKlK9CwKdifGRsV/uOe3fOZFXU5tn9Lo3uOMwu8B6/X2TvQy489WLmX20FVy7fcdgHhmyBsOVgVW/9F+2kYGbUpW9Bc3WrsixVlpl+mkm8Vk0eFPhu8YYA69KyUrWNQgVuVXTvx8PSLoxpsGvq7WHIM8oWf7pu5Lgiz7S2myTyt2RtVc2+t2Rl0OQ01SovKasDnfTYqd3VzcG9A4EanHKRQ0ODVUPdk6G1el45+7CX5JSNzhIceDHQJtlQc7GPZ4cerlKQJCN8CYcZGZRzYMRZUitgr0KJmcwkaliHaE6iUYCTgwICEoWU9Mgx6szCWdG/7veJf5dihIxVMw4jLeFB3I1KxAj577NEf7pZv6uwE1Gh2U7hhEeeEZ9UJq8vllrBpGzl48qG2mA02rcW5rbezgx/s0bCzDUHP9CbH7jGVcZVGN1soS3WQ2Ryxd2L/9tiDO3a+IwzCKInU6eTu/axjVl8KhA2Vk/bRzCbriCv4v96xQ91x7mlgH3AXmDF5F3Iq6N4hFgeRP/0+NKjKuB0yUliGOkuDEsp1+P1QiThZTTWIZyl2RXu0BQe1CaSL+gSZ8DIAV+Ptmv5wm42JVpYWMbVDw/Z+s7gltYU9QK8qmlpn90AfKEW9g3n3Xi6m5+K2ffSf3Z71II4BqM9mYoK5l3LdIbetCgjfsyZ0jC/4TTUcCJZ9dXnn32h226mnFX9iKksdUKmXyuUbZWKOBbOYvoK7R7Fu1YTiLCAcrWGWXrJnE9PFeurLJ5e7/ZGoWQsYqZY6yTi8yBvEmnrTDROWG79/d8pw75ZRi1gPa2f/Rd2e9CBjvY6KV6pe16CUu4DwfSAMDBToTbA0g/eo++rG02wZs+8YJJb/4Ib2ZL3uVuFVtYDwqgmpC/sqdBi4PIYEhMNy2OYORdJ4QsING1Ez3BzNiE8u667NuBXrMUHYdoCd8l0Av/sEYV1MS9dVl7MMQjtXH+QLYhC29qwHeQxofVxAqKwTEL4XhJb/3qlH8liEa21r3hZbB+5yA02wHIcjb5DaOr0p22bfF3PRhKWUeAFhO/pKZXQh2Ld9YVIFhNAFBo9GjKXxXsd64QJC7CJYjbVxeWhCZZVaHCF2IprdNpvS4EALo7ENoZFA6LfGmrAuM8GcHMyprK89SBOyng4lsoPSVgSEvwxC7OOEHeRKa/sA0QlCTwnNWL3w0nHTYJloz/sSwWx6BeHpWRtd2BPvaXYheEe1dwJCaMyKLsWphY7klH4AYeUJ8Lw8QajQCf0IQriWR6+eIGSHG4Gw61AGYbx7VO4gvPYgThxn/9F82hWjmKO/B8KCThW/Nj7Ny6wJn4KwnB6FCmfC08UcNSmlcAHhrs0RF3+rvnbij5UELTDWaexq3uzunoFQ82W3u3VNuJtted1lgnDXi369gTBRN3s4PMUg9PfdojsIrz2IY8DNrxWdpb1gAeFvgbCvNMJUfrxoIG8dqUlSfAOEsEwfbgE0S3HHov/attuasK4g1LGnOLsQ/eO7rAlhPbDzOs3MlgkTKScI2Zm5XJ4gXGyXOwgXA3MFIahUBKHRxwDhZQw8AeGtBxFsbapnBKFTh4Dw10HYaPOhLK6B/RgTK1yEJg7DXTr6cQwBT1u5vF2sXvOOas0OOj99EUUcM9ApYUAP23xnF//FO5q5VQtdbtfLHUFqgdt1TahHp54g1KTxsPHBy8MgLFeb+BGElx7kGtiRKc64ygsIfxGEkbrWjGvodos6Y3+7c/KleXr45PLySTl67usBwuf7hFBcXHYlx+bGzwahZ5QguAAKO7f1am/ioHY4+p9d1sfsgsXaHItzOANVrCUQOoILWDO06tDH3AOkXXu/w9mpfAfhQw9yDfKwo1EnKp4eZJ/wJcFTD6aePWWxD81+usm10XgSiQ0Wz911DD8nz6E7rRXpzMXOxygSbSu7fd49jSS8Xx/nsiPzvB/XDbIfKHC4yJwzJB45wekw4kkZDSfV2DlWeMF2u9xo6YDYdGdO/uzlTcExmcjmJnYuvb8f+aBGGzAfY8AsN/BL3Q89OE9ymMXsmSc8koDw+fpfjU2IPLtHOz2X4uHizoSTM+BY0WVZT8BhC7idz4IqNU6e0ilRgwejXDF8GC6O44R0vz92wxWwVFDR43TpD4Wgnoc88+gdlQt92vFONR03c4qBldfL2Y2zo4TKcnYOrQoNZxtHDytnaCLmwhsfjKOjGmoZA6N3zOzx2YMqj9OkuuDUriLthpTxIHJ29Klk7wOIp00FXC4sh4LhWLBeDmTjgbbzcDde7V2PtydPGfk4NomChrPdtfdvPioXNG7L/EftmtNTBUL/jMe40//Ul1nb+fyF2qw3TrfwTIdK6QNfDc+Z0nyyHnuCL29wOVAOYT8Kd23kzuGODUZt/G42akK1GT4YjoXDnj1ngcBzepzS739zTrPHlx6cY6AcDT4TFTsexHsB4TsEHTP1aru3y6tJtdyvlpdN/UZDRF4D/jMLB/I3tmOuCWt76fLb+na804RrwvbGcm0vX7kPvyIIZbh/AdF/ytsYvv9bYwJCkb8GwvynQGgFhAJCEQGhgHCIu5/WFfnu5mgUc/QfEyNhJb6GNPWnpkv3/TdlvxQIeZdHeRnkX8Bi2WbAmf8hibf9rIDwH5FoHYiVVeG/Lt5RT/3vMyiZu9zvAkIREREBoYiIgFBERERAKCIiIBQREREQiogICEVERASEIiICQhEREQGhiIiA8KifcpSoSqeJCAhJirWfAMJshYlF5IeBcI/WaG3iTf9Ur9X24S8zYEAfeZ3wPeaCt1ZrbUPapTG+OgijUsZ7iAp4OcbuFPOmfqQQkbUowveYC5u23jsjcQi+AQjtZgqDccbypNiP2n10pFSIFPnxpX5F8RN6Rcuk9dVBaM4u7BDQbJI2pcLHe0eqUrFJf71D7EJiXX50pPDvAEK3MlTFyRqg9WeAQWnprHeJuwRYckoWhV8ZhOUazmX4RMKWP2VoydbE+6z267I5GzEfvjII7TVcFqvCBv/PoNcl11pzPXKptRT+Wo6G3zP0P10ni/IafRnuKPQf03f0j2uo5Tq2ItGsugXXPvO9ZsM/0scO12reD/qs16qVmQVX5eurDfsQabBCp9CjjSfnxsUGwlaA3jsbu3LT1SXWOWZBWZWR5QR+ubYb53Tp4NH+TycOHkUj+7UHoV7Y8QWHGA+0ygNtH912yb738bWAnR6k0WNiJvdn+DdBuKsr9yIQjRVQhP7A0P+oFj3S3qTDAsuOOyJ+DUfB74ZYcRUxRxSj+i1nbzW9AX2yUhr9CDXBDqDD5HMWV5sahFZxhzxPEopstVZ0L9xHebkBPaegVgex8fYaVHLo6ozVwB8goKUiMq1IVaGfv7bUW68dwBiGnUP0X4o9bQXaA+IwZW46rXnOhdsxQFM1V/ZAZSv1bwRiCexvbGvfO0K5c9jDmFC+XTo4skP9+ZgPPIowqhMxicwexHSK+UU372igJR5o1L22rdlXBxVaaCUyjpxMdF34rNBI6zP8qyBs+R5pTjOnlDM6JsO2atXEw+mov4piZpt4spHRnn7oAIp62dfoKjXX3iypxo5rj2PCqJP6tTeZTUGhcdWz8dpEoHvhzcnQu6gmxfn1DoqlhEGJFpSBkZCHBkf7LI1NlUCZQFA+N1ZRLgOF8jeIJhSfbeKMzjl3LILSDoYmkDra0jtRl94AxOHogNfKcbMyojPjEYAJcAOeozQ8dr5kSyyRcKfS1uK8ih3sRgdD+794ugNGUeWJuVx7cAfOJdjtbD2DuAOQ/OoofOjefn8sfXxO75RVxhGhqNsC0DHZkvWGfsft33C2vwjC8tCdiLvJa2snb+agua2EVDdm5ISzoqbJNONtddnhL9DEESGs3VE63JRN+w6UV56wwpSAaWHlNDw3R+KHBMxz6Q1hC1d3hxYzXwKNHnkS8WPVhKOtVy3xAOOSvsGy0z+Ly8rNY7oGKHxXQET1cRwUNiu0lUIWz0gjO6OFoHgmA1hVwrPmHNSAT2SXbD77ueuxNDt4xw6G9g+vGNHmOLO/9mBgFd1GNxUaCTQ62+heRdkXrrLhCblnnXBuMNAAYxhkGHaBn+HfBWH2dxAizV/e2GXaxzZOXtx8kWfIAcKCIGzKa6a3VqOR2zQ2sYGR19pjRnpgBH4r/BXHR9qWi/QRWCGOQVPmz3XQ86KKBuAHNn8nVV6Cn70egKYR93l0yX92SeieqccCAy/wAE2jZ2Ek2glClxhDMFLhZ2/tIP0brXMHoeHvjczgOsZ1fejg2f7Pq60XEF57sJE1xL65tA2Q2THbR66AP2uOvcyp4nQ4OI9g7Q3UXD2f4d8Gobn3r1/MHVaFr4LQa4ZAtx5zSmCPzpHOpiEieV8mQ8gYp2SLKRSAPqx8rsS6XAYoNZVe55y5B9tIWdYVhPsVhE6P7kvU5XHb8rcGobF5clWfT7rPmQ7+tt0wp1aHZrWW9Y6x9TkIy8quix0TrjmfHQwoaS/R1F1BeOtBS2DUw+i5gLBwL+4EwjSXsTTU6gq0/RggxL/7M9Ra/mUQlnNj8FhQd8IhEBxfA2HrRglBABfBWmtjrjyM3EerRQJZeeIyoBQBQRfm8sbBRXUuVCsBqBSv9EIeqk8Q+gpyAWFVedipfYoG9Zy/BQj9s5jx2Dl5q/yIebtvHjIIcbGxaWx1aBprDtRCvbEWEGJjOuqBOMc8rdXUvQ3PDm7oEVH6KRGn5WztMuZmD2YspMzFg7+BMEDKQiA8d0ktk23fm0PNWQr8NEopk/5ZEO55OwEylFBeQBipu18GIXjEWA/1DnDgHH5o/2cgxGaGtgUf8r708IQ+mMLHqhnjRu69ae8kaxYQbgpkW0Ho9JxDwWGqfbDfAoRp2/RzEBoztEh4uGWAEIyCMlv9cAZMwnpYBVcYhKMx1eLyoaQWFGN5BYQ2A1G2rk8VOGerH3uwz7QG3KSzx31OTp0gXLvXzF6kMWNfBaFKOa7D5l/corispMnqT9McTW9rQhUQTFeHzHtAGHn2W0bRCUL0Dj2AMOYcDO9LhL4wKIs5amOXsNCn50PFE4TkBlTfAoTt2WP05mlFlQHCsVp+BOHNJO+aEJfZuAxRDEIFjRkN9YC9gjA9+BsvIPTHOoBumpCz1cdDDwKeyjF2E3BXQlt9gnDt3jsIzesg5CFU/lUQ3i0bsgPKtliN7lUQlqiOUxPqd4MQ276ota/y7LkAg2I/l5ZmmKOVSle44N4yWfzryv1YzNEa9LGA0MDsnL4FCAEWl0HuIzYPAOoE4f1JF024riiNxbZxHbMnCPXouKszNsHwSA9a5QGEx9OhcPWO3noQV57lPBCLJw4WczQt3WtX+zhB9e8TzgWEOw3d8M+CECbVtLYTPM6ux1MF6sqXQNjTwpZvnWvC/F4Q2o0c2osxfIIYJ8WlqfVwzAxjKQ9ngb85Zi7eUajaBCG5eXiE7t5+aScpn6k4py8EoUqwg8CP+KiMBgibujgMAYRAD+iPBxCyFklzTsbh8HhU4BGE2GPFulccM7cexPpZfa/y1THDxlaYz+ZwYnYPL6B+LRBCC58r+GFp+IFMbreXQYi7MqyHwjD293QzlB5AuJNWc6N7a1onbxou8yABZ8+akCyLvLFDlir/xDuqjLl2n6UHLJSV+tIoBIfa6XfRCn/SZnnEOmfXFK8gPMYZjAPPc4E/EqbiCkmfgvAY+4c8HM70Yb91ME+CdLbV3F5HvWrCWw/STBCeg/C2RXFOI2Sv5tmdMY/fb+ao/ZfNUerPMjEYRltiN9TpKn66WV/GEQuCQNN4LumIytxM3gWE2FpV065v5aNGAdcClTdux1atnVOCWdYy5DWquIOZ4cAFHBmcIBxTIJz+SFRF3mce+4ToOrRfnZMynL3GVkVgH9uwuIGB2ldYXd1BCG3TLYHd44jGnnY4mMdq0W5jw1ddFgp1OF45/VjBnR1M7c9nYuDsU7hASi9QvvUgQevm0NXnNBxWRTvcB3nub+Cht2xUfq4J4+fTzr7+Ui8c0XO51WS36f3PCt70zfTsCU70GWNwsdw/4XiQDUd17OfCU4E2kxNrU+NQ28gedy7Y/IOcXLBqwh5TDOuif7N1P901YJC21jFYuRK9FprpQx36Si2eFW14utU1Otbaa1Jm1RQOGOhqQK4bByzn+Pq6HlI4K5jqXmhbFqYV2nvHc5aV2xr8idSY2ESGzuzFjVrd4YlaOCGc+4xVMIFr1N2pw3cbh3xh47iO4UD43uaBQOxgDR28UyFGjdfEl3dVEZIw42IxsFJYe3CZTJaJBnOLEGaFuo26t/Ayte5pnKNrhp6V9GGlM6Zz6Cqr/wHO2bdizEQ4zqu1WSraJ1Cl+ehzAA5H24U/+iforOr6H2leh1vxTLe+2hSRkg0QwrAw5x147nZyvfYOglLL0g29Xo682cgjaT3PE7vFzgOP29EcXqxcFoDQUdU8/lCydaixidUST2hsX/7VRTiEq+CAO/CpIs8mOmSwmco5iLkxqSVcY9yMc/LQYpA+7YOqs2FLWwAhEndyNwFgZsdg+jFjnx1M/dD7KE997W7jALDOFLBrD/Ld12UMVTnSQIPuPQcaIL+PFDs9CvC6geJjq3S/DWPU9AH7D7wq/na0tZrT/Q2UmlJ5xRpyL2WUX3frmfsrKPXy/V5qTi9GMaI3VH7T2Wm/QyypVnprvXYWtuT64pVfXCLdOuZ96fXrC7FbD9pfMk76s68P13L+t1+q/PPBf9Nvmtj231iKFbO5Q+Rvq2r9Sy8wtM83Gb8WCMtvOnz/ERBGLbGk/r4480va1n/vuAp/HoS7jl8ZhCL/nuRvHjPuL3BR1PabIJRQTiLPZvXv8ZLZx4Lw95ALL/O6LFGJRO7LG/3tIz7/KyB0eBJe1mMiDyC8nAASEP5FafQWvATJFLlLst892qXwE4qICAhFRASEIiIiAkIREQGhyLeS9rqH642dINkoEhCK/F/xrzr1y+uU40UYyQWEIv8bg6/ED6veqFdO9/bLwu4rIBT5vxJeeQ8EX2q1v3tZREAo8h7JLx/CfYPovGhhJBcQivwB0S+GbqxAdP7yavGNyyICQpH3SXpZEerXD2FqLQgUEIr8ATEvemX8628ECSP5PwfCWkpr/b8utTXmMIaZsl05r/kb3E23ArcxJIQ/r68mNb4ORMyY9+RnnoknV/K8l4uh8dEg4ZlfA6JkrCcVtOf+92T+aRfTquUzv0sWVGydO2u1XlphfQJ8fI4YlGdtqRqj0fjnnvDcq9uXB/vbcqODWMqt8NZ0q7cuqc8vU++3gx+TGrlem2i0wWja8UndO6nHr22IrUEfY4jB92sBAkKS6PWGIbuAX3iDsGYlGg8hWNRJehz6RfrmkBdZ4/tIOWz85xrEgIJgwY+tGrxPc7jDneiuNQSmY1pfCKUG95CjDsgqMQBYgTqN0nsmut+OL0ExUbLBulIcSqc5hCGPKizTUSZDV+ya69T/C1xLdUZ4i6bXgkJ49ZHl+9MAsTZycseZnYXiMQi/h1pvCjmYkYGbS29Az/xRQVLiYo0Sk7WvQxFGIjq/Uo6bOBRhPE5Gcux9nQ98TA8drcads4kSXgzctHY28W7VaJNrG/Iw2JBc286m СКАЧАТЬ