Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей. Марат Авдыев
Чтение книги онлайн.

Читать онлайн книгу Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев страница 14

СКАЧАТЬ style="font-size:15px;">      – А я отвечу, что свойство непрерывности, это значит заполнение фигуры гиперкубиками без пустот, подобно срезу осины, где видны кольца без сучка и задоринки, без дупла. Свойство однородности – это однородный материал что значит гиперкубик в любом слое остается таким же гиперкубиком, словно строительный кирпич. Симметричность – как угодно вращай нашу фигуру, меняй местами оси координат – получишь один и тот же результат. – уверенно продолжал Матвей.

      – И наконец, изотропность пространства это … – пригласил к продолжение диалога проф. Борщов.

      – … это происходит из греческого и означает одинаковость картины мира по всем направлениям. – быстро ответил Матвей. – Так оно и есть в Космосе, в дали от звёзд. Космонавт видит по всем направлениям примерно одно и то же. Проще говоря, наш гиперкубик центрально симметричен.

      – Из однородности пространства вытекает закон сохранения импульса, а из изотропности — закон сохранения момента импульса – задумчиво заметил Борщов, адресуясь сразу ко всем. – Хорошо, а что из сего этого следует?

      – Из этого следует, что перемещая любой слой из области между средним и большим гиперкубами в малый гиперкуб, мы должны уложить его целое число раз. Но я покажу Вам, что это невозможно! Точнее в пространстве размерности больше двух невозможно. – горячо продолжал Матвей. – Правда формулы выходят громоздкими, но мне пришла в голову одна простая идея условия равенство объемов a-Малый гиперкуб и множество точек между c-Большим и b-Средним гиперкубами вступает в противоречие со свойствами центральной симметричности, непрерывности фигуры.

      – Какая это идея? – спросила Татьяна.

      – На какую именно грань гиперкуба или основание гиперпирамиды можно будет отнести гиперкубик из центра координат?

      – Не понимаю.

      – Помните, мы рассекали нашу фигуру на идентичные гиперпирамиды в количестве 2n. Если мы делаем перемещения гиперкубиков, нашего строительного материала, между слоями, из большого в малый и обратно из малого в большой гиперкубы, то в каждой из пирамид слои должны перемещаться совершенно одинаковым образом. Однако последовательно следующие слои в а-Малом разные по объёму, и следовательно это будет нарушать симметрию в c-Большом гиперкубе

      – Почему?

      – Допустим берём всего один слой из промежутка или если хотите множества слоёв, между средним и большим гиперкубом, – горячо продолжал Матвей. – сворачиваем его в а-Малом гиперкубе несколько раз, обязательно целое число, чтобы не было зазоров и пустот. А затем делаем обратную операцию. Если это заснять на фильм, то с точки зрения наблюдателя найдутся хотя бы две грани, которые получит разное число гиперкубиков, а это нарушение изотропности или центральной симметричности фигуры из трёх вложенных друг в друга гиперкубов!

      – То есть ты хочешь сказать, задумчиво сказала Татьяна, – что если рассечь нашу например трёхмерную фигуру на шесть пирамид, СКАЧАТЬ