Breath Taking. Michael J. Stephen
Чтение книги онлайн.

Читать онлайн книгу Breath Taking - Michael J. Stephen страница 15

Название: Breath Taking

Автор: Michael J. Stephen

Издательство: Ingram

Жанр: Биология

Серия:

isbn: 9780802149336

isbn:

СКАЧАТЬ * *

      On the spectrum of childbirth complications, my son’s issue was serious, but an umbilical cord around the neck is not uncommon. In the 1950s and ’60s, the problem facing pediatricians in the United States was significantly worse, with ten thousand newborns a year dying of a mysterious lung disease, not to mention the other thousands worldwide. Most who succumbed didn’t live past a week. In the United States, another fifteen thousand who were affected by this strange inflammatory condition were left with suboptimal lungs when they recovered.

      Typically, these little ones were born early, sometimes by a few weeks, sometimes by a few months, and never got a chance in life. Their deliveries were generally uncomplicated, but within a few minutes of birth their breathing would become labored and noisy. High-pitched grunting would come out of their lungs with exhalation, and their nostrils would flare out and in as they struggled to get enough air into their lungs. Their chest walls would pump up and down, their breath rapid and shallow. Their skin, initially a healthy pink from their mother’s oxygen supply, would turn a grayish blue, the tips of their fingers forbiddingly dark. Other complications followed—bleeding into the brain, kidneys shutting down, and seizures.

      From the delivery room, the babies were attended by pediatricians who desperately tried to keep them alive. But there wasn’t much the staff could do, since not much was known about how to treat them at the time, and no medicines existed to cure whatever was happening. And so these babies, often very small but with normal hearts and brains and kidneys and livers, had their lungs collapse for no apparent reason. Many died.

      The most famous of these breathing-challenged babies was Patrick Kennedy. Born five and a half weeks early on August 7, 1963, on Cape Cod, he began having breathing difficulties immediately after birth. Transferred to an intensive care unit (ICU) in Boston, he continued to decline, his organs failing. His body finally gave out and he passed away two days later. If there was nothing very remarkable about the baby’s illness, there was something unique about his parents. His father was John F. Kennedy, thirty-fifth president of the United States, and his mother was Jacqueline Bouvier Kennedy, the First Lady.

      The nation mourned with them that August, but that was all anybody could do, because nobody had a clue as to what was causing these tragedies.

      Mary Ellen Avery, who eventually helped solve the mystery of neonatal respiratory distress syndrome, came from a simple background—her mother was a school principal, and her father, despite being blind, started a successful cotton products business during the Depression in the 1930s. The lesson he taught his children was obvious: problems were meant to be solved.

      Despite the challenges and resistance from some chauvinist professors, Mary Ellen graduated and stayed on afterward for an internship and residency in pediatrics. A month into the internship, in a screening test, she was diagnosed with tuberculosis and was packed off to a sanatorium in upstate New York, where she was instructed to lie down for most of the day while the antibiotics did their job. Once cured, she returned to finish her training at Hopkins in 1954. The hours were long—shifts of thirty-six hours were the norm then—but it was an exciting time to be in medicine. A year earlier, in 1953, James Watson and Francis Crick had written a paper on the structure of DNA, our genetic material. Also around this time, cardiac catheterization started, and accurate diagnosis of heart disease became a reality. The number of available antibiotics expanded to five, then ten, then twenty. Huge medical breakthroughs seemed to be coming once a month.

      The disease that we now call respiratory distress syndrome of the newborn had many different names in the 1950s, including congenital aspiration pneumonia, asphyxial membrane disease, desquamative anaerosis, congenital alveolar dysplasia, vernix membrane disease, hyaline membrane disease, and hyaline atelectasis. Most doctors today can’t tell you what most of those words even mean. But the esoteric names sprang from the many theories of the syndrome’s cause, masking the unknown in obscure language. Some believed the infants were breathing fluid into the lungs as they passed through the birth canal. Others hypothesized a heart defect, which was causing fluid to back up into the lungs. Another theory proposed that pulmonary circulation was the source of the problem. Unsurprisingly, clinical trials for potential medicines in human subjects all came back negative.

      Despite how far the entire field was from solving this problem, a few things were known. Autopsies noted that the alveoli, those small grapelike clusters where gas exchange takes place, were plugged up with dead inflammatory cells and protein waste, which were named hyaline membranes. This material had a slightly transparent, glassy look. The term hyaline membrane came from the Greek word hyalos, meaning “glass or transparent stone such as crystal.” Most scientists focused their research on this phenomenon.

      Mary Ellen, now Dr. Avery, deliberately did not focus on hyaline membranes, or any other existing theory, freeing herself from all preconceptions and throwing herself into understanding the basic physiology of the lung. Her approach, like that of most of successful scientists, was to explore the mechanisms underlying a given process and not just to observe the output. She focused on the basic questions of what allowed the lung to expand and contract, over and over and over again, without being ripped apart or collapsing in on itself, on what gave this wonderful organ its resiliency and strength to breathe 20,160 times per day, moving some ten thousand liters of air, while an additional five liters of blood makes its way through the blood vessels of the lungs every minute. The heart is made of compact, strong muscle. The liver is a dense structure of channels and filters. The lung, by contrast, is mostly air. Under a microscope, it has a thin, lacy structure, delicate in appearance. Where its resiliency and strength came from was a mystery.

      Dr. Avery studied the respiratory physiology of different animals from birth to a few weeks old, mapping their lung development and characteristics as they emerged into life. Away from the lab, she continued her clinical work at the Boston Lying-In Hospital, overseeing the care of the newborns. Obstetricians would hand the newborn babies to her, and she would start a stopwatch and write down the data as the baby inhaled for the first time, calculating an APGAR score and then taking blood samples. She ran from room to room, her mind on high alert for any clues about these babies’ lungs.

      When СКАЧАТЬ