Electromagnetic Metasurfaces. Christophe Caloz
Чтение книги онлайн.

Читать онлайн книгу Electromagnetic Metasurfaces - Christophe Caloz страница 7

Название: Electromagnetic Metasurfaces

Автор: Christophe Caloz

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119525172

isbn:

СКАЧАТЬ of wire media to that of conventional plasma [141]. In 1968, Veselago mathematically described the response of materials exhibiting both negative permittivity and permeability and demonstrated that such material parameters would correspond to a negative index of refraction [170]. Later, during the 1980s and 1990s, important theoretical and practical developments were made toward the realization of bianisotropic media and microwave absorbers [165]. However, it is only after the beginning of the twentieth century that the field of metamaterials really started to attract massive attention. It is notably due to the first experimental demonstration by Shelby et al. [150] that a negative index of refraction was indeed feasible and the associated concept of the perfect lens imagined by Pendry [120]. The interest in metamaterials grew even more when, in 2006, Pendry and Smith proposed and realized the concept of electromagnetic cloaking, based on transformation optics [121, 146].

      Although the interest in metamaterials was at its peak in the first decade of the twenty-first century, it is their two-dimensional counterparts – the metasurfaces – that progressively became the dominant source of attention. The main reason for this sudden rise in interest is explained by the fact that metasurfaces are easier to fabricate, less bulky, and less lossy than conventional volume metamaterials [48, 57, 58, 105].

-phase range. It is only around 2010 that efficiency transmitarrays able to achieve a
-phase shift range were demonstrated [44].

Schematic illustration of the examples of two-dimensional waves manipulating structures. (a) Fresnel-zone plate reflector. (b) Reflectarray. (c) Interconnected-array lens. (d) Frequency-selective surface. Due to their structural configuration, (a) and (c) do not qualify as metasurfaces. On the other hand, the structures in (b) and (d) can be homogenized into effective material parameters and hence correspond to metasurfaces.

      As of today, there are countless examples of metasurface concepts and applications that have been reported in the literature and it would therefore be impossible to provide a complete description of all of them. Instead, we shall now present a non-exhaustive list of some typical applications of metasurfaces. A very common application is that of polarization conversion [45, 60, 69, 90, 99, 157, 173, 180], where a linearly polarized wave may be transformed either into a circularly polarized one or be rotated using chirality [77]. Metasurfaces have also been commonly used to control the amplitude of the incident wave and, for instance, been used as perfect absorbers by altering the amplitude of the fields so that no reflection or transmission can occur [19, 40, 91, 135, 168, 172, 177]. Nevertheless, one of the most spectacular aspects of metasurfaces is their wavefront manipulating capabilities, which is typically based on the same physical concept used to realize Fresnel lenses [106] and blazed gratings [38, 112], and which have been used for applications such as generalized refraction, collimation, focalization, and holography [1, 12, 46, 47, 55, 62, 63, 95, 96, 136, 153, 154, 175, 178, 179, 181]. Finally, more exotic applications include, for instance, the generation of vortex beams characterized by orbital angular momentum [76, 93, 127, 161, 171, 176], stable tractor beams for nanoparticle manipulation [128], nonreciprocal scattering for electromagnetic isolation [33, 36, 137, 159], nonlinear interactions [89, 169, 182], analog computing [131, 156], and spatial filtering [117, 151, СКАЧАТЬ