Organic Electronics for Electrochromic Materials and Devices. Hong Meng
Чтение книги онлайн.

Читать онлайн книгу Organic Electronics for Electrochromic Materials and Devices - Hong Meng страница 16

СКАЧАТЬ (a) short‐ and (b) long‐term performance.

      Source: Li et al. [21].

      1.3.5 Stability

Graphs depict the charge density (a) and transmittance (b) variation curves of ECD with the cycle number K : 1000.

      Source: Wei et al. [30].

Schematic illustration of the recommended testing guidelines for EC windows for exterior architectural applications.

      Source: Lampert et al. [31].

      1 1 Fletcher, S. (2015). The definition of electrochromism. Journal of Solid State Electrochemistry 19 (11): 3305–3308.

      2 2 Camurlu, P. (2014). Polypyrrole derivatives for electrochromic applications. RSC Advances 4 (99): 55832–55845.

      3 3 Wang, Z., Wang, X., Cong, S. et al. (2020). Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science & Engineering R: Reports 140.

      4 4 Wu, W., Wang, M., Ma, J. et al. (2018). Electrochromic metal oxides: recent progress and prospect. Advanced Electronic Materials 4 (8).

      5 5 Mortimer, R.J. (2011). Electrochromic materials. Annual Review of Materials Research 41 (1): 241–268.

      6 6 Platt, J.R. (1961). Electrochromism, a possible change of color producible in dyes by an electric field. The Journal of Chemical Physics 34 (3): 862–863.

      7 7 Hutchison, M.R. (1913). Electrographic display apparatus and method. US Patent 1,068,774, filed 29 July 1913.

      8 8 Lehovec K. (1957). Photon modulation in semiconductors. US Patent 2,776,367, filed 1 January 1957.

      9 9 Neff, V.D. (1978). Electrochemical oxidation and reduction of thin‐films of prussian blue. Journal of the Electrochemical Society 125 (6): 886–887.

      10 10 Michaelis, L. and Hill, E.S. (1933). The viologen indicators. The Journal of General Physiology 16 (6): 859–873.

      11 11 Schoot, C.J., Ponjee, J.J., van Dam, H.T. et al. (1973). New electrochromic memory display. Applied Physics Letters 23 (2): 64–65.

      12 12 Garnier, F., Tourillon, G., Garzard, M., and Dubois, J.C. (1983). Organic conducting polymers derived from substituted thiophenes as electrochromic material. Journal of Electroanalytical Chemistry 148: 299–303.

      13 13 Mengoli, G., Musiani, M.M., Schreck, B., and Zecchin, S. (1988). Electrochemical synthesis and properties of polycarbazole films in protic acid media. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 246 (1): 73–86.

      14 14 Zheng, H.B., Lu, W., and Wang, Z.Y. (2001). Electrochemical and electrochromic properties of poly(ether naphthalimide)s and related model compounds. Polymer 42 (8): 3745–3750.

      15 15 Oishi, Y., Takado, H., Yoneyama, M. et al. (1990). Preparation and properties of new aromatic polyamides from 4,4′‐diaminotriphenylamine and aromatic dicarboxylic acids. Journal of Polymer Science Part A: Polymer Chemistry 28 (7): 1763–1769.

      16 16 Cheng, S.‐H., Hsiao, S.‐H., Su, T.‐H., and Liou, G.‐S. (2005). Novel aromatic poly(amine‐imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 38 (2): 307–316.

      17 17 Arimoto, F.S. and Haven, A.C. (1955). Derivatives of dicyclopentadienyliron. Journal of the American Chemical Society 77 (23): 6295–6297.

      18 18 Whittell, G.R. and Manners, I. (2007). Metallopolymers: new СКАЧАТЬ