Название: Posterior Analytics
Автор: Aristotle
Издательство: Bookwire
Жанр: Документальная литература
isbn: 4064066467142
isbn:
It is also clear from the following considerations that the syllogism can proceed from necessary premises only. If one who, in a case where demonstration is possible, is not acquainted with the cause, can have no real knowledge of the demonstration, then one who knows that A is necessarily predicable of C, whilst B, the middle term by means of which the demonstration has been effected, is not necessary, must be ignorant of the cause of the thing, for in this case the conclusion is not rendered necessary by the middle term; in fact the middle, since it is not necessary, may not exist at all, but the conclusion is necessary.
Moreover if one who now knows (accidentally) the cause of a necessary conclusion remain unchanged while the thing itself remains unchanged, and if, though he has not forgotten it, yet he has no real knowledge of it, then he can never have had any real knowledge of it before. When the middle term is not anything necessary, it may pass away. In such a case, if the man remain unchanged while the thing remains unchanged, he may hold fast the cause of the thing, but he has no real knowledge of the thing itself, nor has he ever had such knowledge. But if the thing denoted by the middle term has not passed away, but yet is capable of doing so, that which results from it is only the possible, not the necessary; and when one’s inference is derived only from the possible one cannot be said to have knowledge in the true sense of the word. When the conclusion is necessary there is nothing to prevent the middle term, by means of which the conclusion was proved from being necessary, for it is possible to infer the necessary from the not necessary, just as one may infer the true from the untrue.
But when the middle term is necessary the conclusion also is necessary, just as true premises always produce a true conclusion. Thus, suppose A to be necessarily predicable of B, and B of C; A then must be necessarily predicable of C. But when the conclusion is not necessary, it is impossible that the middle should be necessary.
Suppose that, Some C is A, and again that All B is A, and that All C is B. But then All C will be A, which is contrary to our original hypothesis.
Since then that which one knows demonstratively must be necessary, it is clear that one ought to obtain the demonstration by means of a necessary middle term. Otherwise one will neither know the cause of the thing demonstrated nor the necessity of its being what it is, but one will either think one knows it without doing so (that is if one suppose to be necessary that which is not necessary), or one will think one knows it in a different way if one knows the fact of the conclusion with the help of middle terms, and when one knows its cause without the help of middle terms. Now there is no demonstrative science of accidents (attributes) which are not essential according to our definition of ‘essential.’ It is not in this connection possible to prove that the conclusion is necessarily true, for the accidental may not be true; (it is of accidents of this kind that I am speaking).
A difficulty might perhaps be raised as to why accidental premises are asked for for the purposes of a conclusion, if the conclusion drawn from them be not necessary; for it might be maintained that it would make no difference if any sort of premise were brought forward and then the conclusion were subjoined. Premises should however be laid down not because the conclusion is necessarily true because of them, but because the person who admits the premises must necessarily admit the conclusion, and his admission will be correct if the premises are true.
Now since only the essential attributes of any genus and those belonging to it as such are necessary, it is clear that scientific demonstrations both deal with and are drawn from essential attributes. As accidental attributes are not necessary one does not require to know the cause of the conclusion, not even if this be an eternal attribute without being essential, as in the case of syllogisms based on universal concomitance. In this latter connection the essential will be known, but not the fact that it is essential, nor yet why it is so. (By ‘knowledge of why it is essential’ I mean ‘knowing its cause.’) In order then to possess knowledge of this sort the middle term must result from the nature of the minor, and the major from the nature of the middle.
Chapter VII: The Premises and the Conclusion of a Demonstration must belong to the same genus
Premises must be homogeneous with the conclusion. No transference of premises from one genus to another is valid unless the one is subaltern to the other.
It is not possible to arrive at a demonstration by using for one’s proof a different genus from that of the subject in question; e.g. one cannot demonstrate a geometrical problem by means of arithmetic. There are three elements in demonstrations:—(1) the conclusion which is demonstrated, i.e., an essential attribute of some genus; (2) axioms or self-evident principles from which the proof proceeds; (3) the genus in question whose properties, i.e. essential attributes, are set forth by the demonstrations. Now the axioms which form the grounds of the demonstration may be identical for different genera; but in cases where the genera differ, as do arithmetic and geometry, it is not possible, e.g. to adapt an arithmetical demonstration to attributes of spatial magnitudes, unless such magnitudes happen to be numbers. That such transference is possible in certain connections I will explain later (cf. Chap. IX.).
Arithmetical demonstration is restricted to the genus with which it is properly concerned, and so with other sciences. Hence if a demonstration is to be transferred from one science to another the subjects must be the same either absolutely or in some respect. Otherwise such a transference is clearly impossible, for the extremes and the middle terms must necessarily belong to the same genus, for if not they would not be essentially but only accidentally predicable of the subject.
Hence one cannot shew by means of geometry that opposites are dealt with by a single science nor yet that two cubes when multiplied together produce another cube. Nor can one prove what belongs to one science by means of another except when one is subordinate to the other, as optics are to geometry and harmonics to arithmetic.
Neither is geometry concerned with the question of an attribute of line which does not inhere in it as such, and does not result from the special principles of geometry, as for instance the question whether the straight line is the most beautiful kind of line, or whether the straight line is the opposite of a circumference, for these qualities of beauty and opposition do not belong to line as a result of its particular genus, but because it has some qualities in common with other subjects.
Chapter VIII: Demonstration is concerned only with what is eternal
The conclusion of a demonstration must be of everlasting application. Perishable things are, strictly speaking, indemonstrable. This applies also to definitions, which are a partial demonstration.
It is clear that if the premises from which the syllogism proceeds are universal, the conclusion of such a demonstration and of demonstration in general must be eternal. There is then no knowledge properly speaking of perishable things, but only accidentally, because the knowledge of perishable things is not universal but under restrictions of time and manner. When this is the case, the minor premise at least must be other than universal and must be perishable:—perishable because then the conclusion will contain a similar element, other than universal because then the predication will apply to some and СКАЧАТЬ