Название: Posterior Analytics
Автор: Aristotle
Издательство: Bookwire
Жанр: Документальная литература
isbn: 4064066467142
isbn:
By ‘Universal’ I mean that which is true of every case of the subject and of the subject essentially and as such. It is clear then that all universal attributes inhere in things necessarily. Now ‘essentially’ and ‘as such’ are identical expressions: e.g. Point and Straight are essential attributes of line, in that they are attributes of it as such. Or again the possession of two right angles is an attribute of triangle as such, for the angles of a triangle are essentially equal to two right angles. The condition of universality is satisfied only when it is proved to be predicable of any member that may be taken at random of the class in question, but of no higher class; e.g. the possession of two right angles is not a universal attribute of figure, for though one may demonstrate of a particular figure that it has two right angles, it cannot be done of any and every figure, nor does the demonstrator make use of any and every figure, for a square is a figure, but its angles are not equal to two right angles. Any and every isosceles triangle has its angles equal to two right angles, but it is not a primary, ‘triangle’ standing yet higher. Thus any primary taken at random which is shewn to have its angles equal to two right angles, or to possess any other quality, is the primary subject of the universal predicate, and it is to that demonstration primarily and essentially applies; to everything else it applies only in a sense. Nor is this quality of having its angles equal to two right angles a universal attribute of isosceles triangle, but is of a wider application.
Chapter V: From what causes mistakes arise with regard to the discovery of the Universal. How they may be avoided
Demonstration must disregard all accidental circumstances, and aim at the discovery of the essential and universal.
We must not fail to notice that mistakes frequently arise from the primary universal not being really demonstrated in the way in which it is thought to be demonstrated. We fall into this mistake firstly when no universal can be found above the particular or particulars: secondly, when such a universal is found applicable to specifically different subjects, but yet has no name; thirdly, when the universal to be demonstrated stands to the true universal in the relation of part to whole.
In this last case the demonstration is indeed applicable to all the particular parts, but will not contain a primary universal. I consider the demonstration to be primary and essential when it is a demonstration of a primary universal. If then it were to be proved that perpendiculars to the same line are parallel, it might be thought that this was the primary subject of the demonstration because it is true in the case of all right angles so formed. This, however, is not the whole truth. The lines are parallel not because each of the angles at their base is a right angle, and consequently equal to the other, but because such angles are in all cases equal to two right angles.
So, too, if there were no other kind of triangle than the isosceles it might be supposed that the quality of possessing angles equal to two right angles was true of the subject as isosceles. Again, the law that proportionals, whether numbers, lines, solids, or periods of time, may be permuted, would be a case, as it used to be proved, viz., of each case separately, though it may really be proved of all together by means of a single demonstration; but since no single designation included magnitudes, times and solids, and since these differ specifically, they were treated of separately. The law is now, however, proved universally. It does not apply to numbers or lines as such, but only because it belongs to the universal conception as such in which all are supposed to be. Hence even if it be proved of equilateral, scalene and isosceles triangles separately, whether by means of the same or by different proofs that every one has its angles equal to two right angles, one will not know except accidentally, that triangle possesses this quality nor will one know it of the universal triangle, even though there is no other sort of triangle than those mentioned. One does not in fact know it of triangle as such, nor yet of every individual triangle, except distributively, nor does one know it of every triangle ideally, even if there is no triangle of which one does not know it.
When, we may ask, is our knowledge not universal and when is it absolute? It is clear that our knowledge of the law would be universal if triangularity and equilateral triangularity were identical in conception. If, however, the two concepts be not identical but diverse, and if the quality in question belong to triangle as such, then a knowledge of the law as relating merely to a particular form of triangle is not universal. Now does this quality belong to triangle as such, or to isosceles triangle as such? Further, what is its essential primary subject? Also, when does the demonstration of this establish anything universal? Clearly when, after the elimination of accidental qualities, the quality to be demonstrated is found to belong to the subject and to no higher subject. For example, the quality of having its angles equal to two right angles will be found to belong to bronze isosceles triangle, but will still be present when the qualities ‘bronze’ and ‘isosceles’ are eliminated; so too, it may be said they will cease to be present when Form or Limit are eliminated. But they are not the first conditions of such disappearance. What then will first produce this result? If it is triangle, the quality of having two right angles belongs to the particular kinds of triangles as a result of its belonging essentially to triangle, and the demonstration in regard to triangle is a universal demonstration.
Chapter VI: Demonstration is founded on Necessary and Essential Principles
For necessary conclusions necessary premises are required.
If then demonstrative knowledge be derived from necessary principles (and that which one knows is never contingent), and if the essential attributes of a subject be necessary (and essential attributes either inhere in the definition of the subject, or, in cases where one of a pair of opposites must necessarily be true, have the subjects inhering in their definition), then it is clear that the demonstrative syllogism must proceed from necessary premises Every attribute is predicable either in the way mentioned or accidentally, but accidental attributes are not necessary. We should then either express ourselves as above or lay it down as an elementary principle that demonstration is something necessary, and that if a thing has been demonstrated it can never be other than it is; and consequently that the demonstrative syllogism must proceed from necessary premises. It is indeed possible to syllogize from true premises without demonstrating anything, but not so if the premises be also necessary, for this very necessity is the characteristic of demonstration.
An empirical confirmation of the view that demonstration results from necessary premises is that when we bring forward objections against persons who imagine themselves to be producing a demonstration, we bring our objections in the form ‘There is no necessity.’ Whether we hold that the things in question are really contingent or only considered to be so for the sake of a particular argument. It is clear СКАЧАТЬ